Inicio  /  Forest Systems  /  Vol: 20 Núm: 3 Par: 0 (2011)  /  Artículo
ARTÍCULO
TITULO

Soil dynamics and carbon stocks 10 years after restoration of degraded land using Atlantic Forest tree species

L. Jr. Rodrigues Nogueira    
J.L. de Moraes Gonçalves    
V. Lex Engel    
J. Parrotta    

Resumen

Brazil?s Atlantic Forest ecosystem has been greatly affected by land use changes, with only 11.26% of its original vegetation cover remaining. Currently, Atlantic Forest restoration is receiving increasing attention because of its potential for carbon sequestration and the important role of soil carbon in the global carbon balance. Soil organic matter is also essential for physical, chemical and biological components of soil fertility and forest sustainability. This study evaluated the potential for soil recovery in contrasting restoration models using indigenous Atlantic Forest tree species ten years after their establishment. The study site is located in Botucatu municipality, São Paulo State-Brazil, in a loamy dystrophic Red-Yellow Argisol site (Typic Hapludult). Four treatments were compared: i) Control (Spontaneous Restoration); ii) Low Diversity (five fast-growing tree species established by direct seeding); iii) High Diversity (mixed plantings of 41 species established with seedlings) and; iv) Native Forest (well conserved neighboring forest fragment). The following soil properties were evaluated: (1) physical- texture, density and porosity; (2) chemical- C, N, P, S, K, Ca, Mg, Al and pH; (3) biological-microbial biomass. Litter nutrient concentrations (P, S, K, Ca and Mg) and C and N litter stocks were determined. Within ten years the litter C and N stocks of the Low Diversity treatment area were higher than Control and similar to those in both the High Diversity treatment and the Native Forest. Soil C stocks increased through time for both models and in the Control plots, but remained highest in the Native Forest. The methods of restoration were shown to have different effects on soil dynamics, mainly on chemical properties. These results show that, at least in the short-term, changes in soil properties are more rapid in a less complex system like the Low Diversity model than in the a High Species Diversity model. For both mixed plantation systems, carbon soil cycling can be reestablished, resulting in increases in carbon stocks in both soil and litter.

 Artículos similares

       
 
Pasquale Garofalo, Marco Parlavecchia, Luisa Giglio, Ivana Campobasso, Alessandro Vittorio Vonella, Marco Botta, Tommaso Tadiello, Vincenzo Tucci, Francesco Fornaro, Rita Leogrande, Carolina Vitti, Alessia Perego, Marco Acutis and Domenico Ventrella    
In anticipation of climate changes, strategic soil management, encompassing reduced tillage and optimized crop residue utilization, emerges as a pivotal strategy for climate impact mitigation. Evaluating the transition from conventional to conservative c... ver más
Revista: Agronomy

 
Tianbao Huang, Zhenhua Wang, Li Guo, Haiqiang Li, Mingdong Tan, Jie Zou, Rui Zong and Yam Prasad Dhital    
The evaluation of soil particle composition and salt dynamics is essential for promoting the sustainable development of oasis agriculture in arid regions under long-term mulched drip irrigation (MDI). In this study, we employed the space-for-time substit... ver más
Revista: Agronomy

 
Shibiao Cai, Bangyu Zheng, Zhiyuan Zhao, Zhaoxia Zheng, Na Yang and Bingnian Zhai    
Understanding the stoichiometry of extracellular enzymes in soil, particularly in relation to nutrient acquisition (e.g., carbon, nitrogen, phosphorus), provides valuable insights into microorganisms? resource requirements. This study investigates the me... ver más
Revista: Agronomy

 
Zhiqiang Tang, Na He, Liying Zhang, Lili Wang, Diankai Gong, Changhua Wang, Hui Wang, Guomin Sui and Wenjing Zheng    
A comprehensive understanding of rice straw (RS) and biochar (BC) addition affecting soil quality, enzyme activities, bacterial community structure and grain yield is crucial. The objective of this study was to examine the dynamics of the soil microbial ... ver más
Revista: Agronomy

 
Zhiyuan Yang, Jiayi Xu, Junlin Li, Lirong He, Hongwei Xu, Xinrong Guo, Sha Xue and Yang Cao    
The ecological niche gradient is an important determinant of microbial community structure. In this paper, we studied variation in rhizosphere bacterial diversity and community composition along an ecological niche gradient. We used the high-throughput s... ver más
Revista: Agronomy