ARTÍCULO
TITULO

Magnetic-Responsive Microparticles that Switch Shape at 37 °C

Koichiro Uto and Mitsuhiro Ebara    

Resumen

Shape-memory polymers have seen tremendous research efforts driven by the need for better drug carries and biomedical devices. In contrast to these advancements, fabrication of shape-memory particles which actuate at body temperature remains scarce. We developed a shape-memory microparticle system with dynamically tunable shapes under physiological temperature. Temperature-responsive poly(e-caprolactone) (PCL) microparticles were successfully prepared by an in situ oil-in-water (o/w) emulsion polymerization technique using linear telechelic and tetra-branched PCL macromonomers. By optimizing the mixing ratios of branched PCL macromonomers, the crystal-amorphous transition temperature was adjusted to the biological relevant temperature. The particles with a disk-like temporal shape were achieved by compression. The shape recovery from the disk to spherical shape was also realized at 37 °C. We also incorporated magnetic nanoparticles within the PCL microparticles, which can be remote-controllable by a magnet, in such a way that they can be actuated and manipulated in a controlled way.

 Artículos similares