Inicio  /  Energies  /  Vol: 12 Núm: 12 Par: June-2 (2019)  /  Artículo
ARTÍCULO
TITULO

Design of State Feedback Current Controller for Fast Synchronization of DFIG in Wind Power Generation Systems

Resumen

Doubly-fed induction generators (DFIGs) are widely used in wind energy conversion systems. The dynamic features of DFIGs make it important to focus on designing high-performance control schemes. However, the dynamic characteristics of such generators depend on nonlinear parameters, such as stator flux, stator current, and rotor current, which increase the overall system complexity. In addition, the DFIG Wind Energy Conversion Systems (WECSs) size is growing beyond 7 MW, which increases stress on both the mechanical drive train and the power circuits during connection to the grid. Such stress and dynamic features cannot be neglected. Therefore, robust controllers must be implemented which have the ability to support the dynamic frequencies of wind energy to ensure system stability in grid connection mode and during subsequent use. Conventional vector control configurations that use proportional-integral controllers have various drawbacks, such as parameter tuning difficulties, mediocre dynamic performance, and reduced robustness. In this study, we focused on improving DFIG synchronization to the grid by applying state feedback current controllers with a feedforward component to smooth the connection to the grid, as well as to improve the steady-state and transient characteristics of the controller. State feedback controllers are proposed to replace the proportional-integral controllers on both the rotor and grid sides. The proposed controller is designed using a multivariable system and feedforward control for input reference and incorporating disturbances into the control equations for fast synchronization and transient responses. To demonstrate the advantages of this controller, experimental studies are presented for both the transient and steady states.

 Artículos similares

       
 
Sadaf Montazeri, Zhen Lei and Nicole Odo    
The construction industry, despite its anticipated significant growth, has struggled with low productivity over the past two decades. Design for manufacturing and assembly (DfMA), a methodology with a history of success in other industries, presents a pr... ver más
Revista: Buildings

 
Qi Zhu, Su-Mei Wang and Yi-Qing Ni    
Maglev transportation is a highly promising form of transportation for the future, primarily due to its friction-free operation, exceptional comfort, and low risk of derailment. Unlike conventional transportation systems, maglev trains operate with no me... ver más
Revista: Buildings

 
Cundong Xu, Junjiao Tian, Guoxia Wang, Haidong Lian, Rongrong Wang and Xiaomeng Hu    
The vortices, backflow, and siltation caused by sediment-laden flow are detrimental to the safe and efficient operation of pumping stations. To explore the effects of water?sediment two-phase flow on the velocity field, vorticity field, and sediment dist... ver más
Revista: Water

 
Stan Wehbe, Feleke Zewge, Yoshihiko Inagaki, Wolfram Sievert, Tirumala Uday Kumar Nutakki and Akshay Deshpande    
A mechanistic model was developed to simulate one-dimensional pesticide transport in two-stage vertical flow constructed wetland. The two pesticides taken under study were carbendazim and chlorothalonil. The water flow patterns within the constructed wet... ver más
Revista: Water

 
Jihong Wang, Zhuo Wang and Lidong Zhang    
Clustering protocols and simultaneous wireless information and power transfer (SWIPT) technology can solve the issue of imbalanced energy consumption among nodes in energy harvesting-cognitive radio sensor networks (EH-CRSNs). However, dynamic energy cha... ver más