Inicio  /  Energies  /  Vol: 5 Núm: 5Pages1 Par: May (2012)  /  Artículo
ARTÍCULO
TITULO

Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters

Fei Wang    
Zengqiang Mi    
Shi Su and Hongshan Zhao    

Resumen

Short-term solar irradiance forecasting (STSIF) is of great significance for the optimal operation and power predication of grid-connected photovoltaic (PV) plants. However, STSIF is very complex to handle due to the random and nonlinear characteristics of solar irradiance under changeable weather conditions. Artificial Neural Network (ANN) is suitable for STSIF modeling and many research works on this topic are presented, but the conciseness and robustness of the existing models still need to be improved. After discussing the relation between weather variations and irradiance, the characteristics of the statistical feature parameters of irradiance under different weather conditions are figured out. A novel ANN model using statistical feature parameters (ANN-SFP) for STSIF is proposed in this paper. The input vector is reconstructed with several statistical feature parameters of irradiance and ambient temperature. Thus sufficient information can be effectively extracted from relatively few inputs and the model complexity is reduced. The model structure is determined by cross-validation (CV), and the Levenberg-Marquardt algorithm (LMA) is used for the network training. Simulations are carried out to validate and compare the proposed model with the conventional ANN model using historical data series (ANN-HDS), and the results indicated that the forecast accuracy is obviously improved under variable weather conditions.

 Artículos similares

       
 
Lilliana L. H. Peng and C. Y. Jim    
Most studies explored green-roof thermal effects on a few hot summer days based on short-term monitoring data. Few studies investigated the seasonal and diurnal patterns of thermal performance and associated weather effects. This research aims to address... ver más
Revista: Sustainability

 
Paul E. Hardisty, Tom S. Clark and Robert G. Hynes    
Electricity generation is one of the major contributors to global greenhouse gas emissions. Transitioning the World?s energy economy to a lower carbon future will require significant investment in a variety of cleaner technologies, including renewables a... ver más
Revista: Energies