ARTÍCULO
TITULO

Effect of Information Availability on Stability of Traffic Flow: Percolation Theory Approach

Alireza Talebpour    
Hani S. Mahmassani    
Samer H. Hamdar    

Resumen

Connectivity and automation are expected to enhance safety and efficiency in transportation systems. Connectivity will provide information to drivers/autonomous vehicles to enhance decision-making reliability at the operational and tactical levels. Consequently, drivers are more likely to execute safe and efficient maneuvers and autonomous vehicles will have a more accurate perception of the traffic condition and an ?error-free? execution of the driving maneuvers. At the operational level, ensuring string stability is a key consideration since unstable traffic flow results in shockwave propagation and possibly crashes. While several studies have examined the effects of information availability on string stability in a connected environment, most of the approaches are focused on automated driving (e.g., Cooperative Adaptive Cruise Control systems) and do not consider a mixed environment with regular, connected, and autonomous vehicles. To ensure connectivity in such a mixed environment, the correlation between communication range and connected vehicles density should be considered. To capture the effects of this correlation, this study uses the Continuum Percolation theory to determine the effects of the vehicular density and communication range on the connectivity level in telecommunications network and consequently, on the string stability of traffic flow. Based on the Continuum Percolation theory, there is a critical density of connected vehicles above which the entire system is connected. This critical density also depends on the communication range. This study presents an analytical derivation of this critical density. Moreover, this study evaluates the string stability under different communication ranges and market penetration rates of connected and autonomous vehicles. Results revealed that as communication range increases, the system becomes more stable and at high communication ranges, the system performs similar to the system with full connectivity. Moreover, results indicated the existence of an optimal communication range to maximize stability and ensure information delivery.

 Artículos similares

       
 
Feng Tian, Mengjiao Wang and Xiaopei Liu    
Aiming at solving the problems of local halo blurring, insufficient edge detail preservation, and serious noise in traditional image enhancement algorithms, an improved Retinex algorithm for low-light mine image enhancement is proposed. Firstly, in HSV c... ver más
Revista: Applied Sciences

 
Prashanth Barla, Hemalatha Shivarama, Ganesan Deepa and Ujjwal Ujjwal    
Hybrid magnetic tunnel junction/complementary metal oxide semiconductor (MTJ/CMOS) circuits based on in-memory-computation (IMC) architecture is considered as the next-generation candidate for the digital integrated circuits. However, the energy consumpt... ver más

 
Wei Huang, Kaitao Meng, Wenzhou Sun, Jianxu Shu, Tianhe Xu and Hao Zhang    
Underwater localization is one of the key techniques for positioning, navigation, timing (PNT) services that could be widely applied in disaster warning, underwater rescues and resource exploration. One of the reasons why it is difficult to achieve accur... ver más

 
Thi-Hong-Hanh Nguyen, Tien-Hung Hou, Hai-An Pham and Chia-Cheng Tsai    
Pollution caused by marine oil spills can lead to persistent ecological disasters and severe social and economic damages. Numerical simulations are useful and essential tools for accurate decision making during emergencies and planning response actions. ... ver más

 
Jifeng Jin, Lin Shang, Zijian Yang, Haiwang Wang and Guotong Li    
Satellite networks show the development trend in global coverage, flexible access, and reliable transmission. They are the key to building a wide coverage, massive connection, three-dimensional, all-round, all-weather, space-, air- and ground-integrated ... ver más
Revista: Applied Sciences