Resumen
This paper presents a coordinated control method for a doubly-fed induction generator (DFIG)-based wind-power generation system with a series grid-side converter (SGSC) under distorted grid voltage conditions. The detailed mathematical models of the DFIG system with SGSC are developed in the multiple synchronous rotating reference frames. In order to counteract the adverse effects of the voltage harmonics upon the DFIG, the SGSC generates series compensation control voltages to keep the stator voltage sinusoidal and symmetrical, which allows the use of the conventional vector control strategy for the rotor-side converter (RSC), regardless of grid voltage harmonics. Meanwhile, two control targets for the parallel grid-side converter (PGSC) are identified, including eliminating the oscillations in total active and reactive power entering the grid or suppressing the fifth- and seventh-order harmonic currents injected to the grid. Furthermore, the respective PI-R controller in the positive synchronous reference frame for the SGSC voltage control and PGSC current control have been developed to achieve precise and rapid regulation of the corresponding components. Finally, the proposed coordinated control strategy has been fully validated by the simulation results of a 2 MW DFIG-based wind turbine with SGSC under distorted grid voltage conditions.