Inicio  /  Energies  /  Vol: 5 Núm: 10Pages Par: October (2012)  /  Artículo
ARTÍCULO
TITULO

Effect of CH4?Air Ratios on Gas Explosion Flame Microstructure and Propagation Behaviors

Xianfeng Chen    
Yin Zhang and Ying Zhang    

Resumen

To reveal the inner mechanism of gas explosion dynamic behavior affected by gas equivalent concentration, a high speed Schlieren image system and flow field measurement technology was applied to record the gas explosion flame propagation and flame structure transition. The results show that a flame front structure transition occurs, followed by a flame accelerating propagation process. The laminar to turbulence transition was the essential cause of the flame structure changes. The laminar flame propagation behavior was influenced mainly by gas expansion and fore-compressive wave effect, while the turbulent flame speed mostly depended on turbulence intensity, which also played an important role in peak value of the explosive pressure and flame speed. On the condition that the laminar-turbulent transition was easier to form, the conclusion was drawn that, the lowest CH4 concentration for maximum overpressure can be obtained, which was the essential reason why the ideal explosive concentration differs under different test conditions.