|
|
|
Jie Zhang, Fan Li, Xin Zhang, Yue Cheng and Xinhong Hei
As a crucial task for disease diagnosis, existing semi-supervised segmentation approaches process labeled and unlabeled data separately, ignoring the relationships between them, thereby limiting further performance improvements. In this work, we introduc...
ver más
|
|
|
|
|
|
Yiheng Zhou, Kainan Ma, Qian Sun, Zhaoyuxuan Wang and Ming Liu
Over the past several decades, deep neural networks have been extensively applied to medical image segmentation tasks, achieving significant success. However, the effectiveness of traditional deep segmentation networks is substantially limited by the sma...
ver más
|
|
|
|
|
|
Woonghee Lee and Younghoon Kim
This study introduces a deep-learning-based framework for detecting adversarial attacks in CT image segmentation within medical imaging. The proposed methodology includes analyzing features from various layers, particularly focusing on the first layer, a...
ver más
|
|
|
|
|
|
László Szilágyi and Levente Kovács
|
|
|
|
|
|
Wandile Nhlapho, Marcellin Atemkeng, Yusuf Brima and Jean-Claude Ndogmo
The advent of deep learning (DL) has revolutionized medical imaging, offering unprecedented avenues for accurate disease classification and diagnosis. DL models have shown remarkable promise for classifying brain tumors from Magnetic Resonance Imaging (M...
ver más
|
|
|