|
|
|
Subin Kim, Heejin Hwang, Keunyeong Oh and Jiuk Shin
The seismically deficient column details in existing reinforced concrete buildings affect the overall behavior of the building depending on the failure type of the column. The purpose of this study is to develop and validate a machine-learning-based pred...
ver más
|
|
|
|
|
|
Junling Zhang, Min Mei, Jun Wang, Guangpeng Shang, Xuefeng Hu, Jing Yan and Qian Fang
The deformation of tunnel support structures during tunnel construction is influenced by geological factors, geometrical factors, support factors, and construction factors. Accurate prediction of tunnel support structure deformation is crucial for engine...
ver más
|
|
|
|
|
|
Feifei He, Qinjuan Wan, Yongqiang Wang, Jiang Wu, Xiaoqi Zhang and Yu Feng
Accurately predicting hydrological runoff is crucial for water resource allocation and power station scheduling. However, there is no perfect model that can accurately predict future runoff. In this paper, a daily runoff prediction method with a seasonal...
ver más
|
|
|
|
|
|
Andrei Konstantinov, Lev Utkin and Vladimir Muliukha
A new random forest-based model for solving the Multiple Instance Learning problem under small tabular data, called the Soft Tree Ensemble Multiple Instance Learning, is proposed. A new type of soft decision trees is considered, which is similar to the w...
ver más
|
|
|
|
|
|
Yanna Sang, Yuan Chen and Juwei Zhang
Neural machine translation has achieved good translation results, but needs further improvement in low-resource and domain-specific translation. To this end, the paper proposed to incorporate source language syntactic information into neural machine tran...
ver más
|
|
|