Resumen
Neste artigo propomos um sistema de visão computacional para classificar áreas permeáveis e impermeáveis de uma região delimitada para estudo compreendendo a Microbacia do Segredo e microbacias adjacentes, localizada no município de Campo Grande/MS, Brasil, a fim de avaliar o aumento do adensamento urbano entre os anos de 2008 e 2016. O sistema proposto baseia-se no método de segmentação de imagens Simple Linear Iterative Clustering (SLIC) para particionar uma imagem em múltiplos segmentos e gerar superpixels que diferenciem as áreas permeáveis e impermeáveis; e algoritmos de extração de atributos para descrever as características visuais, como cor, gradiente, textura e forma. O desempenho de cinco métodos de aprendizado supervisionados foi avaliado para a tarefa de reconhecimento de áreas permeáveis e impermeáveis. A abordagem proposta atingiu uma acurácia de 94,6% usando o algoritmo Support Vector Machine (SVM). Além disso, os resultados mostraram um aumento de 7,2% na taxa de ocupação urbana da área de estudo entre os anos analisados. Os resultados indicam que a abordagem proposta pode apoiar especialistas e gestores no monitoramento do adensamento urbano e o seu impacto ambiental.