ARTÍCULO
TITULO

Linear Spectral Random Mixture Analysis for Hyperspectral Imagery

Chang    
C.-I. Chiang    
S.-S. Smith    
J. A. Ginsberg    
I. W.    

Resumen

No disponible

 Artículos similares

       
 
Timur Agliullin, Vladimir Anfinogentov, Oleg Morozov, Airat Sakhabutdinov, Bulat Valeev, Ayna Niyazgulyeva and Yagmyrguly Garovov    
The work is dedicated to a comparative analysis of the following methods for fiber Bragg grating (FBG) spectral response modeling. The Layer Sweep (LS) method, which is similar to the common layer peeling algorithm, is based on the reflectance and transm... ver más
Revista: Algorithms

 
Carlos Enrique Valencia Murillo, Miguel Ernesto Gutierrez Rivera, Nicolas Flores Samano and Luis David Celaya Garcia    
This contribution presents a finite element shell model capable of performing linear vibration analyses of shell-type structures made of functionally graded material (FGM). The model is based on the seven-parameter spectral/hp finite element formulation,... ver más
Revista: Applied Sciences

 
Zujun Xu, Zhiyu Jin and Donna Strickland    
It has been observed that when the multi-frequency Raman scattering process is pumped by two frequency chirped pulses in the transient regime, the anti-Stokes orders are spectrally broadened on the lower-frequency side, causing each of the orders to have... ver más
Revista: Applied Sciences

 
Spyridon G. Kosionis, Alexandros Kontakos and Emmanuel Paspalakis    
We examine the optical absorption in a hybrid structure composed of a metal nanoshell and a semiconductor quantum dot, while interacting with a linearly polarized probe electromagnetic field. First, we derive the equations of motion, in the rotating wave... ver más
Revista: Applied Sciences

 
Marcin Kolodziej, Andrzej Majkowski, Remigiusz J. Rak and Przemyslaw Wiszniewski    
One approach employed in brain?computer interfaces (BCIs) involves the use of steady-state visual evoked potentials (SSVEPs). This article examines the capability of artificial intelligence, specifically convolutional neural networks (CNNs), to improve S... ver más
Revista: Applied Sciences