Resumen
Sunflower is sensitive to drought, and furthermore, sunflower hybrids display limited cytoplasmic diversity. In addition, the wild cytoplasmic sources of sunflower are not well explored for their potential to introduce drought tolerance into newly developed hybrids. Therefore here, we carried out a Line × Tester-based genetic study using 19 sunflower genotypes representing, 13 cytoplasmic male sterile (CMS) lines from wild and conventional sources, 2 maintainer lines, and 4 restorer lines. The CMS and maintainer lines were crossed with restorer lines to develop sixty F1 hybrids. The parents and their hybrids were evaluated under two water regimes, normal irrigation and drought stress (i.e., withholding water). A total of twelve important plant descriptors were studied over a period of two years and the significant differences between parents and hybrids are reported here. More specifically, hybrid lines were higher in average values for all the descriptors. The contribution of female parent was more prominent in the expression of traits in hybrids as compared to male parents. The CMS sources varied significantly regarding seed yield per plant and other physiological traits. Proline content in the leaves of all the genotypes was three times higher in the water stress regime. Accession CMS-PKU-2A was identified as the best general combiner for leaf area and specific leaf weight., whereas CMS-234A was the best general combiner for biological yield and photosynthetic efficiency under both conditions. The cross combinations CMS-ARG-2A × RCR-8297, CMS-234A × P124R, and CMS-38A × P124R were found significant for biological yield, seed yield and oil content under both environments. Overall, this study provides useful information about the cytoplasmic effects on important sunflower traits and drought stress tolerance.