Resumen
CaCO3 is often used as an additive in many industries. However, additional functions are required to expand its applicability. This entails modification of its physicochemical properties. Accordingly, in this study, a particle surface modification treatment was performed on CaCO3 produced from desulfurized gypsum for a range of industrial applications. In the experiment, fatty acids were used to modify the CaCO3 surface, and the scale of the modification effect was based on the degree of change associated with a polar surface taking on nonpolar surface properties. In the preliminary modification experiment, stearic acid was dissolved in 2-propanol or chloroform, and the extent of the reaction and the active ratio were measured according to the stearic acid concentration. The results showed that the effective active ratio, considering the activity to unit adsorption, was higher in 2-propanol than in chloroform. Consequently, the modification solvent used in the experiment changed the CaCO3 surface from a hydrophilic, polarized form to a hydrophobic, nonpolarized form. These results will also allow the CaCO3 produced to be used as a filler in a range of chemical industries.