Resumen
Yttria-stabilized zirconia (YSZ) hollow sphere (HS) powder is a novel potential feedstock material for the plasma spraying of next generation advanced thermal barrier coatings with low thermal conductivity and high sintering resistibility. In this study, YSZ HS powders were prepared by plasma treatment with/without a heat preservation zone around the flying path of the particles during plasma flame. The results of the scanning electron microscopy of YSZ HS powders showed that HS prepared with a heat preservation zone during the plasma process exhibited a regular spherical morphology and a homogeneous thin shell structure. Due to the sufficient heating of the shell regions, the HS powder presented a well densified shell structure. Furthermore, the mechanism of formation of the HS powder with reduced shell thickness was also discussed based on the analysis of the evolution of the powder structure. This kind of hollow sphere powder with a very thin shell structure provides a new alternative feedstock material for the development of next generation high performance thermal barrier coatings.