Resumen
The study deals with an increase in the tool life parameter for metal-cutting tools and efficiency of end milling for titanium alloys, due to the use of tools with multilayered composite nano-structured Zr–ZrN–(Zr,Al)N and Zr–ZrN–(Zr,Cr,Al)N coatings, deposited through the technology of the filtered cathodic vacuum arc deposition (FCVAD). The studies included the microstructured investigations using SEM, the analysis of chemical composition (Energy-dispersive X-ray spectroscopy, EDXS), the determination of the value of critical failure force (with the use of scratch testing), and the measurement of the microhardness of the coatings under study. The cutting tests were conducted in end milling of titanium alloys at various cutting speeds. The mechanisms of wear and failure for end milling cutters with the coatings under study were studied in milling. The studies determined the advantages of using a tool with the coatings under study compared to an uncoated tool, as well as to tools with the commercial Ti–TiN coating and the nano-structured Ti–TiN–(Ti,Al)N coating. Adding Cr to the composition of the coating can significantly increase the hardness, while the coating retains sufficient ductility and brittle fracture resistance, which allows for a best result when milling titanium alloys.