ARTÍCULO
TITULO

Fast Training of Recurrent Networks Based on the EM Algorithm

Ma    
S    
Ji    
C    

Resumen

No disponible

 Artículos similares

       
 
Xinzhi Liu, Jun Yu, Toru Kurihara, Congzhong Wu, Zhao Niu and Shu Zhan    
It seems difficult to recognize an object from its background with similar color using conventional segmentation methods. An efficient way is to utilize hyperspectral images that contain more wave bands and richer information than only RGB components. Pa... ver más
Revista: Applied Sciences

 
Nikolaos Makrakis, Prodromos N. Psarropoulos and Yiannis Tsompanakis    
Large-scale lifelines in seismic-prone regions very frequently cross areas that are characterized by active tectonic faulting, as complete avoidance might be techno-economically unfeasible. The resulting Permanent Ground Displacements (PGDs) constitute a... ver más
Revista: Infrastructures

 
Guilherme Perin, Lichao Wu and Stjepan Picek    
The adoption of deep neural networks for profiling side-channel attacks opened new perspectives for leakage detection. Recent publications showed that cryptographic implementations featuring different countermeasures could be broken without feature selec... ver más
Revista: Algorithms

 
Youngki Park and Youhyun Shin    
In this paper, we introduce an efficient approach to multi-label image classification that is particularly suited for scenarios requiring rapid adaptation to new classes with minimal training data. Unlike conventional methods that rely solely on neural n... ver más
Revista: Applied Sciences

 
Eike Jakubowitz, Thekla Feist, Alina Obermeier, Carina Gempfer, Christof Hurschler, Henning Windhagen and Max-Heinrich Laves    
Human grasping is a relatively fast process and control signals for upper limb prosthetics cannot be generated and processed in a sufficiently timely manner. The aim of this study was to examine whether discriminating between different grasping movements... ver más
Revista: Applied Sciences