Resumen
All living organisms perceive mechanical signals, regardless of their taxonomic classifications or life habits. Because of their immobility, plants are influenced by a variety of environmental stresses, such as mechanical stress, during their growth and development. Plants develop physiological behaviors to adapt to their environment for long-term development and evolution. Sound-induced stress—an abiotic stress factor—is an example of mechanical stress and is caused by sound waves generated by different sources. This stress has a negative effect on the development and growth of plants. The strawberry plants evaluated in this study were exposed to three different sound intensity levels (95, 100, 105 dB) at a constant frequency of 1000 Hz. In strawberry plants, stress induced by sound waves is thought to trigger increased production of secondary metabolites as a defense mechanism. To determine the effect of sound applications, the fresh and dry weights of the roots and shoots were measured in strawberry plants, and the pH, total soluble solids (Brix), titratable acidity, vitamin C, total sugar, total acid, and total phenols were analyzed in the fruits. Results show that the sound stress, which was produced at a constant frequency (1000 Hz) and different sound levels (95, 100, 105 dB), affects the growth parameters of the plant and several quality parameters of the fruit.