Resumen
Aircraft trajectory planning is affected by various uncertainties. Among them, those in weather prediction have a large impact on the aircraft dynamics. Trajectory planning that assumes a deterministic weather scenario can cause significant performance degradation and constraint violation if the actual weather conditions are significantly different from the assumed ones. The present study proposes a fundamental framework to plan four-dimensional optimal descent trajectories that are robust against uncertainties in weather-prediction data. To model the nature of the uncertainties, we utilize the Global Ensemble Forecast System, which provides a set of weather scenarios, also referred to as members. A robust trajectory planning problem is constructed based on the robust optimal control theory, which simultaneously considers a set of trajectories for each of the weather scenarios while minimizing the expected value of the overall operational costs. We validate the proposed planning algorithm with a numerical simulation, assuming an arrival route to Leipzig/Halle Airport in Germany. Comparison between the robust and the inappropriately-controlled trajectories shows the proposed robust planning strategy can prevent deteriorated costs and infeasible trajectories that violate operational constraints. The simulation results also confirm that the planning can deal with a wide range of cost-index and required-time-of-arrival settings, which help the operators to determine the best values for these parameters. The framework we propose is in a generic form, and therefore it can be applied to a wide range of scenario settings.