Inicio  /  Aerospace  /  Vol: 10 Par: 8 (2023)  /  Artículo
ARTÍCULO
TITULO

Machine Learning and IoT Trends for Intelligent Prediction of Aircraft Wing Anti-Icing System Temperature

E. S. Abdelghany    
Mohamed B. Farghaly    
Mishari Metab Almalki    
H. H. Sarhan and Mohamed El-Sayed M. Essa    

Resumen

Airplane manufacturers are frequently faced with formidable challenges to improving both aircraft performance and customer safety. Ice accumulation on the wings of aircraft is one of the challenges, which could result in major accidents and a reduction in aerodynamic performance. Anti-icing systems, which use the hot bleed airflow from the engine compressor, are considered one of the most significant solutions utilized in aircraft applications to prevent ice accumulation. In the current study, a novel approach based on machine learning (ML) and the Internet of Things (IoT) is proposed to predict the thermal performance characteristics of a partial span wing anti-icing system constructed using the NACA 23014 airfoil section. To verify the proposed strategy, the obtained results are compared with those obtained using computational ANSYS 2019 software. An artificial neural network (ANN) is used to build a forecasting model of wing temperature based on experimental data and computational fluid dynamics (CFD) data. In addition, the ThingSpeak platform is applied in this article to realize the concept of the IoT, collect the measured data, and publish the data in a private channel. Different performance metrics, namely, mean square error (MSE), maximum relative error (MAE), and absolute variance (R2" role="presentation">??2R2 R 2 ), are used to evaluate the prediction model. Based on the performance indices, the results prove the efficiency of the proposed approach based on ANN and the IoT in designing a forecasting model to predict the wing temperature compared to the numerical CFD method, which consumes a lot of time and requires high-speed simulation devices. Therefore, it is suggested that the ANN-IoT approach be applied in aviation.

 Artículos similares

       
 
Zhenzhen Di, Miao Chang, Peikun Guo, Yang Li and Yin Chang    
Most worldwide industrial wastewater, including in China, is still directly discharged to aquatic environments without adequate treatment. Because of a lack of data and few methods, the relationships between pollutants discharged in wastewater and those ... ver más
Revista: Water

 
Ognjen Radovic,Srdan Marinkovic,Jelena Radojicic    
Credit scoring attracts special attention of financial institutions. In recent years, deep learning methods have been particularly interesting. In this paper, we compare the performance of ensemble deep learning methods based on decision trees with the b... ver más

 
Pablo de Llano, Carlos Piñeiro, Manuel Rodríguez     Pág. pp. 163 - 198
This paper offers a comparative analysis of the effectiveness of eight popular forecasting methods: univariate, linear, discriminate and logit regression; recursive partitioning, rough sets, artificial neural networks, and DEA. Our goals are: clarify the... ver más

 
Hugo López-Fernández     Pág. 22 - 25
Mass spectrometry using matrix assisted laser desorption ionization coupled to time of flight analyzers (MALDI-TOF MS) has become popular during the last decade due to its high speed, sensitivity and robustness for detecting proteins and peptides. This a... ver más

 
Rejath Jose, Faiz Syed, Anvin Thomas and Milan Toma    
The advancement of machine learning in healthcare offers significant potential for enhancing disease prediction and management. This study harnesses the PyCaret library?a Python-based machine learning toolkit?to construct and refine predictive models for... ver más
Revista: Applied Sciences