Inicio  /  Aerospace  /  Vol: 10 Par: 2 (2023)  /  Artículo
ARTÍCULO
TITULO

Predictive Model of a Mole-Type Burrowing Robot for Lunar Subsurface Exploration

Zihao Yuan    
Ruinan Mu    
Haifeng Zhao and Ke Wang    

Resumen

In this work, a dynamic model is proposed to simulate the drilling and steering process of an autonomous burrowing mole to access scientific samples from the deep subsurface of the Moon. The locomotive module is idealized as a rigid rod. The characteristic parameters are considered, including the length, cross-section diameter, and centroid of a cylindrical rod. Based on classical Lagrangian mechanics, a 3-DOF dynamic model for the locomotion of this autonomous device is developed. By introducing resistive force theory, the interaction scheme between the locomotive body and the lunar regolith is described. The effects of characteristic parameters on resistive forces and torques are studied and discussed. Proportional-derivative control strategies are introduced to calculate the tracking control forces following a planned trajectory. The simulation results show that this method provides a reliable manipulation of a mole-type robot to avoid obstacles during the tracking control process in layered sediments. Overall, the proposed reduced-order model is able to simulate the operating and controlling scenarios of an autonomous burrowing robot in lunar subsurface environments. This model provides intuitive inputs to plan the space missions of a drilling robot to extract subsurface samples on an extraterrestrial planet such as the Moon or Mars.

 Artículos similares

       
 
Junling Zhang, Min Mei, Jun Wang, Guangpeng Shang, Xuefeng Hu, Jing Yan and Qian Fang    
The deformation of tunnel support structures during tunnel construction is influenced by geological factors, geometrical factors, support factors, and construction factors. Accurate prediction of tunnel support structure deformation is crucial for engine... ver más
Revista: Applied Sciences

 
Yongyong Zhao, Jinghua Wang, Guohua Cao and Xu Yao    
This study introduces a reduced-order leg dynamic model to simplify the controller design and enhance robustness. The proposed multi-loop control scheme tackles tracking control issues in legged robots, including joint angle and contact-force regulation,... ver más
Revista: Applied Sciences

 
Lilai Jin, Sarah J. Higgins, James A. Thompson, Michael P. Strager, Sean E. Collins and Jason A. Hubbart    
Saturated hydraulic conductivity (Ksat) is a hydrologic flux parameter commonly used to determine water movement through the saturated soil zone. Understanding the influences of land-use-specific Ksat on the model estimation error of water balance compon... ver más
Revista: Water

 
Sofía Ramos-Pulido, Neil Hernández-Gress and Gabriela Torres-Delgado    
Current research on the career satisfaction of graduates limits educational institutions in devising methods to attain high career satisfaction. Thus, this study aims to use data science models to understand and predict career satisfaction based on infor... ver más
Revista: Informatics

 
Wenhao Li, Xianxia Zhang, Yueying Wang and Songbo Xie    
Model predictive control (MPC), an extensively developed rolling optimization control method, is widely utilized in the industrial field. While some researchers have incorporated predictive control into underactuated unmanned surface vehicles (USVs), mos... ver más