Inicio  /  Aerospace  /  Vol: 9 Par: 11 (2022)  /  Artículo
ARTÍCULO
TITULO

Effect of Penetrative Combustion on Regression Rate of 3D Printed Hybrid Rocket Fuel

Xiaodong Yu    
Hongsheng Yu    
Wei Zhang    
Luigi T. DeLuca and Ruiqi Shen    

Resumen

3D printing manufacturing is used to manufacture hybrid rocket fuel grains featuring a special grid-like structure in order to control combustion performance. An innovative penetrative combustion mechanism, capable of affecting regression rate, was noticed during the combustion of low-packing density grains. The 3D printing manufacture was implemented using acrylonitrile-butadiene-styrene (ABS) material to clarify this mechanism and the corresponding combustion performance. Grid-like structure fuels with different packing densities were prepared to assess the effects of penetrative combustion on fuel combustion performance. The thermal decomposition of ABS was analyzed by infra-red spectroscopic analysis (FTIR) and thermogravimetric analysis-differential thermal scanning (TG-DSC). The internal structure of the ABS grains was observed by high-resolution 3D micro-computed tomography (µCT). All fuel grains were burned in a hybrid 2D radial burner, allowing visualization of the combustion process and evaluation of the ballistic parameters. The experimental results suggest that the combustion process of the ABS porous grains includes two regimes, both featuring an increased regression rate. In the normal layer-by-layer burning regime, at Gox=45 kg/(m2·s)" role="presentation" style="position: relative;">??????=45 kg/(m2·s)Gox=45 kg/(m2·s) G o x = 45   kg / ( m 2 · s ) , the regression rates of 100% and 90% ABS increased by 29.6% and 38.1%, respectively, compared with solid ABS which was manufactured by a computerized numerical control (CNC) lathe. In the fracture-led volumetric burning regime, data acquisition is more difficult, but the regression rate is again observed to increase as the packing density decreases.

 Artículos similares

       
 
Alireza Kakoee, Jacek Hunicz and Maciej Mikulski    
This paper presents a comprehensive investigation into the design of a methane oxidation catalyst aftertreatment system specifically tailored for the Wärtsilä W31DF natural gas engine which has been converted to a reactivity-controlled compression igniti... ver más

 
Xiaolei Liu, Kan Wang, Yuru He, Yang Ming and Hao Wang    
To extend initial ignition-related fire prevention in ship engine room, this work presents a case study of marine diesel leakage for identifying accidental ignition by hot surface. Based on a self-designed experimental platform, a full-scale innovative e... ver más

 
Jungho Lee, Ingyu Lee, Seongphil Woo, Yeoungmin Han and Youngbin Yoon    
The spray and combustion characteristics of a gas-centered swirl coaxial (GCSC) injector used in oxidizer-rich staged combustion cycle engines were analyzed. The study focused on varying the recess ratio, presence of gas swirl, and swirl direction to imp... ver más
Revista: Aerospace

 
Sheng Zhang, Yuguang Bai, Youwei Zhang and Dan Zhao    
Hypersonic vehicles or engines usually employ complex thermal protecting shells. This sometimes brings multi-physics difficulties, e.g., thermal-aeroelastic problems like panel flutter etc. This paper aims to propose a novel optimization method versus th... ver más
Revista: Aerospace

 
Xin Wei, Xiaojuan Shi, Honghu Ji and Jinlong Hu    
In order to study the infrared radiation characteristics of an air-breathing hypersonic vehicle powered by a scramjet, it is necessary to solve the internal and external flow field of the air-breathing hypersonic vehicle. Owing to the complexity and diff... ver más
Revista: Aerospace