Resumen
To study the effects of synthetic jet control on the aerodynamic performance of a rotor in forward flight, we conducted a series of experiments with varying rotor rotation speeds and free stream velocities. In the test, we used a six-component balance and a PIV system and designed a blade with a particular structure that covered the frame. The experimental results revealed that the synthetic jet could effectively delay flow separation over the blade and enhance the aerodynamic efficiency of the rotor. Moreover, we investigated how different jet parameters influenced the flow control effects of synthetic jets on the rotor?s aerodynamic characteristics. We drew some valuable conclusions from our analysis. In forward flight, the jet located closer to the leading edge of the blade had a stronger impact on improving the aerodynamic performance of the rotor. The jet with a 90° jet angle increased the rotor normal force by 225%, which was the maximum possible increase, while the jet with a 30° inclined angle had the best control effects on preventing flow separation in the retreating blade. Our study provides valuable insights into the use of synthetic jets for rotor flow control and suggests possible applications for improving rotorcraft performance and stability.