Inicio  /  Aerospace  /  Vol: 8 Par: 12 (2021)  /  Artículo
ARTÍCULO
TITULO

A Simplified FE Modeling Strategy for the Drop Process Simulation Analysis of Light and Small Drone

Yongjie Zhang    
Yingjie Huang    
Zhiwen Li    
Ke Liang    
Kang Cao and Yazhou Guo    

Resumen

The numerical accuracy of drop process simulation and collision response for drones is primarily determined by the finite element modeling method and simplified method of drone airframe structure. For light and small drones exhibiting diverse shapes and configurations, mixed materials and structures, deformation and complex destruction behaviors, the way of developing a reasonable and easily achieved high-precision simplified modeling method by ensuring the calculation accuracy and saving the calculation cost has aroused increasing concern in impact dynamics simulation. In the present study, the full-size modeling and simplified modeling methods that are specific to different components of a relatively popular light and small drone were analyzed in an LS-DYNA software environment. First, a full-size high-precision model of the drone was built, and the model accuracy was verified by performing the drop tests at the component level as well as the whole machine level. Subsequently, based on the full-size high-precision model, the property characteristics of the main components of the light and small drone and their common simplification methods were classified, a series of simplified modeling methods for different components were developed, several single simplified models and combined simplified models were built, and a method to assess the calculation error of the peak impact load in the simplified models was proposed. Lastly, by comparing and analyzing the calculation accuracy of various simplified models, the high-precision simplified modeling strategy was formulated, and the suggestions were proposed for the impact dynamics simulation of the light and small drone falling. Given the analysis of the calculation scale and solution time of the simplified model, the high-precision simplified modeling method developed here is capable of noticeably reducing the modeling difficulty, the solution scale and the calculation time while ensuring the calculation accuracy. Moreover, it shows promising applications in several fields (e.g., structure design, strength analysis and impact process simulation of drone).

 Artículos similares

       
 
Pietro Roncioni, Marco Marini, Oscar Gori, Roberta Fusaro and Nicole Viola    
The request for faster and greener civil aviation is urging the worldwide scientific community and aerospace industry to develop a new generation of supersonic aircraft, which are expected to be environmentally sustainable and to guarantee a high-level p... ver más
Revista: Aerospace

 
Neboj?a Lukic, Toni Ivanov, Jelena Svorcan and Aleksandar Simonovic    
A novel concept of morphing airfoils, capable of changing camber and thickness, is proposed. A variable airfoil shape, defined by six input parameters, is achieved by allowing the three spinal points (at fixed axial positions) to slide vertically, while ... ver más
Revista: Aerospace

 
Jean-Marc Guarini and Jennifer Coston-Guarini    
In their 2023 book, ?The Blue Compendium: From Knowledge to Action for a Sustainable Ocean Economy?, Lubchenko and Haugan invoked alternate stable (AS) states marginally as an undesired consequence of sources of disturbance on populations, communities an... ver más

 
Zhengwei Wang, Haitao Gu, Jichao Lang and Lin Xing    
This study verifies the effects of deployment parameters on the safe separation of Autonomous Underwater Vehicles (AUVs) and mission payloads. The initial separation phase is meticulously modeled based on computational fluid dynamics (CFD) simulations em... ver más

 
Yiran Liu, Boyi Chen, Jinbao Chen and Yanbin Liu    
This paper investigates a rapid modeling method and robust analysis of hypersonic vehicles using multidisciplinary integrated techniques. First, the geometrical configuration is described using parametric methods based on the class?shape technique. Aerod... ver más
Revista: Applied Sciences