Inicio  /  Aerospace  /  Vol: 11 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

Research on the Zooming Method for Determining the Flow, Heat Transfer, and Infrared Radiation of an Air-Breathing Hypersonic Vehicle Powered by a Scramjet

Xin Wei    
Xiaojuan Shi    
Honghu Ji and Jinlong Hu    

Resumen

In order to study the infrared radiation characteristics of an air-breathing hypersonic vehicle powered by a scramjet, it is necessary to solve the internal and external flow field of the air-breathing hypersonic vehicle. Owing to the complexity and difficulty of solving the three-dimensional flow and heat-transfer process in a scramjet combustor, a quasi-one-dimensional calculation method was established. Utilizing zooming technology, a combination of quasi-one-dimensional simulation within the combustion chamber and three-dimensional numerical simulation elsewhere on the vehicle was employed to obtain the flow field. The accuracy of the zooming method in determining flow, heat transfer, and infrared radiation was verified through comparison with experimental data. The results show that under the flight condition of Ma = 6, the gas temperature and wall heat flux in the scramjet combustor first increased and then decreased along the flow direction. The Mach number of the plume was smaller than that of the free flow, while the velocity of the plume was slightly larger. In the wavelength range of 3?5 µm, as the azimuth angle increased, the integrated radiation intensity of the air-breathing hypersonic vehicle demonstrated a characteristic pear-shaped distribution.

 Artículos similares