Inicio  /  Aerospace  /  Vol: 9 Par: 9 (2022)  /  Artículo
ARTÍCULO
TITULO

On the Aeroelasticity of the Active Span and Passive Pitching Polymorphing Wing: A Parametric Study

Zawar Haider    
Rafic M. Ajaj and Lakmal Seneviratne    

Resumen

This paper presents an aeroelastic analysis of a polymorphing wing capable of active span extension and passive pitch variation. The wing is split into two segments: an inboard segment responsible for span extension/retraction and an outboard segment capable of pitch variation. The two segments are connected through an overlapping spar and a torsional spring. A finite element aeroelastic model is developed where the wing structure is discretized into Euler?Bernoulli beam elements and the aerodynamic loads are calculated using Theodorsen?s unsteady model. A comprehensive parametric analysis is carried out with and without span extension to analyze the effect of varying critical design parameters, such as elastic axis position of outboard section and torsional spring rigidity, and conditions for aeroelastic phenomena of flutter and divergence are studied. A gust load analysis is carried out to quantify the capability of the outboard wing passive twist mechanism to alleviate loads. Finally, a nonlinear analysis is carried out by replacing the linear torsional spring with a nonlinear cubic spring to study the effects of cubic hardening and softening on the aeroelasticity of the polymorphing wing.

 Artículos similares

       
 
Saeed Hosseini, Mohammad Ali Vaziry-Zanjany and Hamid Reza Ovesy    
In this research, the architecture and the functionalities of the LAMBDA (Laboratory of Aircraft Multidisciplinary Knowledge-Based Design and Analysis) framework for the design, analysis, and optimization of civil aircraft are presented. The framework is... ver más
Revista: Aerospace

 
Siliang Du, Yi Zha and Qijun Zhao    
The concept of the Fan Wing, a novel aircraft vector-force-integrated device that combines a power unit with a fixed wing to generate distributed lift and thrust by creating a low-pressure vortex on the wing?s surface, was studied. To investigate the uni... ver más
Revista: Aerospace

 
Alex T. Lefik, Romeo M. Marian and Javaan S. Chahl    
There are flapping wing-style systems being developed by various institutions around the world. However, despite there being many systems that superficially appear robust, there is no viable flapping wing flying system at this time. We identified a gap i... ver más
Revista: Aerospace

 
Zikang Jin, Zonghan Yu, Fanshuo Meng, Wei Zhang, Jingzhi Cui, Xiaolong He, Yuedi Lei and Omer Musa    
The parametric design method is widely utilized in the preliminary design stage for hypersonic vehicles; it ensures the fast iteration of configuration, generation, and optimization. This study proposes a novel parametric method for a wide-range, wing-mo... ver más
Revista: Aerospace

 
Neboj?a Lukic, Toni Ivanov, Jelena Svorcan and Aleksandar Simonovic    
A novel concept of morphing airfoils, capable of changing camber and thickness, is proposed. A variable airfoil shape, defined by six input parameters, is achieved by allowing the three spinal points (at fixed axial positions) to slide vertically, while ... ver más
Revista: Aerospace