Inicio  /  Aerospace  /  Vol: 11 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

Numerical Investigation on the Mechanism of Solid Rocket Motor Instability Induced by Differences between On-Ground and In-Flight Conditions

Ge Wang    
Chengke Li    
Weiqiang Pu    
Bocheng Zhou    
Haiwei Yang and Zenan Yang    

Resumen

A solid rocket motor (SRM) with a high aspect ratio that performs normally during ground tests may experience instability during flight. To address this issue, this study employs the pulse triggering method and the numerical approach of two-way fluid?structure interaction to investigate the mechanisms behind the SRM instability resulting from distinctions between on-ground and in-flight conditions. The results indicate that the main distinctions between the on-ground and in-flight conditions for SRMs are the strong constraints during the ground test, as well as aerodynamic forces and aerodynamic heating during flight. The strong constraints in the ground test effectively suppress structural vibrations by limiting displacements. In flight conditions, the aerodynamic heating reduces the strength of the SRM casing and aerodynamic forces provide sustained energy input for structural vibrations during flight. The mechanism for the ground/flight differences that induce SRM instability is that the structural natural frequencies are reduced by aerodynamic heating and the first-order acoustic frequency increased by the propellant regression approach reaches the resonance condition. Therefore, an instability factor F is proposed to represent the resonance relationship between the structural natural modes and the acoustic mode of SRMs. Furthermore, the closer the frequency of the aerodynamic forces is to the resonance frequency of the acoustic-structure coupling, the more pronounced the SRM instability.

 Artículos similares

       
 
Wenjie Shen, Suofang Wang, Mengyuan Wang, Jia Suo and Zhao Zhang    
Improving airflow pressure is of great significance for the cooling and sealing of aeroengines. In a co-rotating cavity with radial inflow, vortex reducers are used to decrease the pressure drop. However, the performance of traditional vortex reducers is... ver más
Revista: Aerospace

 
Panagiotis D. Kordas, George N. Lampeas and Konstantinos T. Fotopoulos    
The main purpose of this study comprises the design and the development of a novel experimental configuration for carrying out tests on a full-scale stiffened panel manufactured of fiber-reinforced thermoplastic material. Two different test-bench design ... ver más
Revista: Aerospace

 
Junyao Zhang, Hao Zhan and Baigang Mi    
The submerged inlet exhibits good stealth characteristics and lower drag, but it has a low total pressure recovery coefficient and high distortion rate, which limits its widespread application. This paper proposes a vortex diverter aimed at enhancing the... ver más
Revista: Aerospace

 
Shuang Ruan, Ming Zhang, Shaofei Yang, Xiaohang Hu and Hong Nie    
A dynamic model is established to investigate the shimmy instability of a landing gear system, considering the influence of nonlinear damping. The stability criterion is utilized to determine the critical speed at which the landing gear system becomes un... ver más
Revista: Aerospace

 
Liyuan Wang, Pengfei Zhou, Jiayang Gu and Yapeng Li    
This study focuses on a large-scale cruise ship as the subject of research, with a particular emphasis on conditions not covered in the MSC.1/Circ.1533 guidelines. The investigation explores the impact of specific motion states of the cruise ship, includ... ver más