Inicio  /  Aerospace  /  Vol: 10 Par: 7 (2023)  /  Artículo
ARTÍCULO
TITULO

A Reinforcement Learning Method Based on an Improved Sampling Mechanism for Unmanned Aerial Vehicle Penetration

Yue Wang    
Kexv Li    
Xing Zhuang    
Xinyu Liu and Hanyu Li    

Resumen

The penetration of unmanned aerial vehicles (UAVs) is an important aspect of UAV games. In recent years, UAV penetration has generally been solved using artificial intelligence methods such as reinforcement learning. However, the high sample demand of the reinforcement learning method poses a significant challenge specifically in the context of UAV games. To improve the sample utilization in UAV penetration, this paper innovatively proposes an improved sampling mechanism called task completion division (TCD) and combines this method with the soft actor critic (SAC) algorithm to form the TCD-SAC algorithm. To compare the performance of the TCD-SAC algorithm with other related baseline algorithms, this study builds a dynamic environment, a UAV game, and conducts training and testing experiments in this environment. The results show that among all the algorithms, the TCD-SAC algorithm has the highest sample utilization rate and the best actual penetration results, and the algorithm has a good adaptability and robustness in dynamic environments.

 Artículos similares

       
 
Bohdan Petryshyn, Serhii Postupaiev, Soufiane Ben Bari and Armantas Ostreika    
The development of autonomous driving models through reinforcement learning has gained significant traction. However, developing obstacle avoidance systems remains a challenge. Specifically, optimising path completion times while navigating obstacles is ... ver más
Revista: Information

 
Yu-Hung Chang, Chien-Hung Liu and Shingchern D. You    
The dynamic flexible job-shop problem (DFJSP) is a realistic and challenging problem that many production plants face. As the product line becomes more complex, the machines may suddenly break down or resume service, so we need a dynamic scheduling frame... ver más
Revista: Information

 
Siyao Lu, Rui Xu, Zhaoyu Li, Bang Wang and Zhijun Zhao    
The International Lunar Research Station, to be established around 2030, will equip lunar rovers with robotic arms as constructors. Construction requires lunar soil and lunar rovers, for which rovers must go toward different waypoints without encounterin... ver más
Revista: Aerospace

 
Depeng Gao, Shuai Wang, Yuwei Yang, Haifei Zhang, Hao Chen, Xiangxiang Mei, Shuxi Chen and Jianlin Qiu    
Servo motors play an important role in automation equipment and have been used in several manufacturing fields. However, the commonly used control methods need their parameters to be set manually, which is rather difficult, and this means that these meth... ver más
Revista: Algorithms

 
Ziyi Wang, Xinran Li, Luoyang Sun, Haifeng Zhang, Hualin Liu and Jun Wang    
Efficient yet sufficient exploration remains a critical challenge in reinforcement learning (RL), especially for Markov Decision Processes (MDPs) with vast action spaces. Previous approaches have commonly involved projecting the original action space int... ver más
Revista: Algorithms