Inicio  /  Aerospace  /  Vol: 9 Par: 3 (2022)  /  Artículo
ARTÍCULO
TITULO

A Machine Learning Approach for Global Steering Control Moment Gyroscope Clusters

Charalampos Papakonstantinou    
Ioannis Daramouskas    
Vaios Lappas    
Vassilis C. Moulianitis and Vassilis Kostopoulos    

Resumen

This paper addresses the problem of singularity avoidance for a 4-Control Moment Gyroscope (CMG) pyramid cluster, as used for the attitude control of a satellite using machine learning (ML) techniques. A data-set, generated using a heuristic algorithm, relates the initial gimbal configuration and the desired maneuver?inputs?to a number of null space motions the gimbals have to execute?output. Two ML techniques?Deep Neural Network (DNN) and Random Forest Classifier (RFC)?are utilized to predict the required null motion for trajectories that are not included in the training set. The principal advantage of this approach is the exploitation of global information gathered from the whole maneuver compared to conventional steering laws that consider only some local information, near the current gimbal configuration for optimization and are prone to local extrema. The data-set generation and the predictions of the ML systems can be made offline, so no further calculations are needed on board, providing the possibility to inspect the way the system responds to any commanded maneuver before its execution. The RFC technique demonstrates enhanced accuracy for the test data compared to the DNN, validating that it is possible to correctly predict the null motion even for maneuvers that are not included in the training data.

 Artículos similares

       
 
Zhenzhen Di, Miao Chang, Peikun Guo, Yang Li and Yin Chang    
Most worldwide industrial wastewater, including in China, is still directly discharged to aquatic environments without adequate treatment. Because of a lack of data and few methods, the relationships between pollutants discharged in wastewater and those ... ver más
Revista: Water

 
Ognjen Radovic,Srdan Marinkovic,Jelena Radojicic    
Credit scoring attracts special attention of financial institutions. In recent years, deep learning methods have been particularly interesting. In this paper, we compare the performance of ensemble deep learning methods based on decision trees with the b... ver más

 
Pablo de Llano, Carlos Piñeiro, Manuel Rodríguez     Pág. pp. 163 - 198
This paper offers a comparative analysis of the effectiveness of eight popular forecasting methods: univariate, linear, discriminate and logit regression; recursive partitioning, rough sets, artificial neural networks, and DEA. Our goals are: clarify the... ver más

 
Hugo López-Fernández     Pág. 22 - 25
Mass spectrometry using matrix assisted laser desorption ionization coupled to time of flight analyzers (MALDI-TOF MS) has become popular during the last decade due to its high speed, sensitivity and robustness for detecting proteins and peptides. This a... ver más

 
Rejath Jose, Faiz Syed, Anvin Thomas and Milan Toma    
The advancement of machine learning in healthcare offers significant potential for enhancing disease prediction and management. This study harnesses the PyCaret library?a Python-based machine learning toolkit?to construct and refine predictive models for... ver más
Revista: Applied Sciences