Inicio  /  Aerospace  /  Vol: 10 Par: 2 (2023)  /  Artículo
ARTÍCULO
TITULO

A Fault Diagnosis Method under Data Imbalance Based on Generative Adversarial Network and Long Short-Term Memory Algorithms for Aircraft Hydraulic System

Kenan Shen and Dongbiao Zhao    

Resumen

Safe and stable operation of the aircraft hydraulic system is of great significance to the flight safety of an aircraft. Any fault may be a threat to flight safety and may lead to enormous economic losses and even human casualties. Hence, the normal status of the aircraft hydraulic system is large, but very few data samples relate to the fault status. This causes a data imbalance in the fault diagnosis of the aircraft hydraulic system, which directly affects the accuracy of aircraft fault diagnosis. To solve the data imbalance problem in the fault diagnosis of the aircraft hydraulic system, this paper proposes an improved GAN-LSTM algorithm by using the improved GAN method, which can stably and accurately generate high-quality simulated fault samples using a small number of fault data. First, the model of the aircraft hydraulic system was built using AMESim software, and the imbalanced fault data and normal status data were acquired. Then, the imbalanced data were used to train the GAN model until the system reached a Nash equilibrium. By comparing the time domain and frequency signal, it was found that the quality of the generated sample was highly similar to the real sample. Moreover, LSTM (long short-term memory) and some other data-driven intelligent fault diagnosis methods were used as classifiers. The accuracy of these fault diagnosis methods increased steadily when the number of fault samples was gradually increased until it reached a balance with the normal sample. Meanwhile, three different sample generation methods were compared and analyzed to find the method with the best data generation ability. Finally, the anti-noise performance of the LSTM-GAN method was analyzed; this model has superior noise immunity.

 Artículos similares

       
 
Yong Liu, Jialin Zhou, Dong Zhang, Shaoyu Wei, Mingshun Yang and Xinqin Gao    
To solve the problem of low diagnostic accuracy caused by the scarcity of fault samples and class imbalance in the fault diagnosis task of box-type substations, a fault diagnosis method based on self-attention improvement of conditional tabular generativ... ver más
Revista: Applied Sciences

 
Qiang Cheng, Yong Cao, Zhifeng Liu, Lingli Cui, Tao Zhang and Lei Xu    
The computer numerically controlled (CNC) system is the key functional component of CNC machine tool control systems, and the servo drive system is an important part of CNC systems. The complex working environment will lead to frequent failure of servo d... ver más
Revista: Applied Sciences

 
Hongfeng Gao, Tiexin Xu, Renlong Li and Chaozhi Cai    
Because the gearbox in transmission systems is prone to failure and the fault signal is not obvious, the fault end cannot be located. In this paper, a gearbox fault diagnosis method grounded on improved complete ensemble empirical mode decomposition with... ver más
Revista: Applied Sciences

 
Xiaojiao Gu, Yang Tian, Chi Li, Yonghe Wei and Dashuai Li    
The fault diagnosis method proposed in this paper can be applied to the diagnosis of bearings in machine tool spindle systems.
Revista: Applied Sciences

 
Qingyong Zhang, Changhuan Song and Yiqing Yuan    
Vehicle gearboxes are subject to strong noise interference during operation, and the noise in the signal affects the accuracy of fault identification. Signal denoising and fault diagnosis processes are often conducted independently, overlooking their syn... ver más
Revista: Applied Sciences