REVISTA
AI

   
Inicio  /  AI  /  Vol: 5 Par: 1 (2024)  /  Artículo
ARTÍCULO
TITULO

A Time Series Approach to Smart City Transformation: The Problem of Air Pollution in Brescia

Elena Pagano and Enrico Barbierato    

Resumen

Air pollution is a paramount issue, influenced by a combination of natural and anthropogenic sources, various diffusion modes, and profound repercussions for the environment and human health. Herein, the power of time series data becomes evident, as it proves indispensable for capturing pollutant concentrations over time. These data unveil critical insights, including trends, seasonal and cyclical patterns, and the crucial property of stationarity. Brescia, a town located in Northern Italy, faces the pressing challenge of air pollution. To enhance its status as a smart city and address this concern effectively, statistical methods employed in time series analysis play a pivotal role. This article is dedicated to examining how ARIMA and LSTM models can empower Brescia as a smart city by fitting and forecasting specific pollution forms. These models have established themselves as effective tools for predicting future pollution levels. Notably, the intricate nature of the phenomena becomes apparent through the high variability of particulate matter. Even during extraordinary events like the COVID-19 lockdown, where substantial reductions in emissions were observed, the analysis revealed that this reduction did not proportionally decrease PM2.5" role="presentation">2.52.5 2.5 and PM10" role="presentation">1010 10 concentrations. This underscores the complex nature of the issue and the need for advanced data-driven solutions to make Brescia a truly smart city.

Palabras claves

 Artículos similares

       
 
Yong Zhang, Xin Wang, Zongli Jiang, Junfeng Wei, Hiroyuki Enomoto and Tetsuo Ohata    
Arctic glaciers comprise a small fraction of the world?s land ice area, but their ongoing mass loss currently represents a large cryospheric contribution to the sea level rise. In the Suntar-Khayata Mountains (SKMs) of northeastern Siberia, in situ measu... ver más
Revista: Water

 
Jianzhao Liu, Liping Gao, Fenghui Yuan, Yuedong Guo and Xiaofeng Xu    
Soil water shortage is a critical issue for the Southwest US (SWUS), the typical arid region that has experienced severe droughts over the past decades, primarily caused by climate change. However, it is still not quantitatively understood how soil water... ver más
Revista: Water

 
Angel E. Muñoz-Zavala, Jorge E. Macías-Díaz, Daniel Alba-Cuéllar and José A. Guerrero-Díaz-de-León    
This paper reviews the application of artificial neural network (ANN) models to time series prediction tasks. We begin by briefly introducing some basic concepts and terms related to time series analysis, and by outlining some of the most popular ANN arc... ver más
Revista: Algorithms

 
Daniel Einarson, Fredrik Frisk, Kamilla Klonowska and Charlotte Sennersten    
Machine learning (ML) is increasingly used in diverse fields, including animal behavior research. However, its application to ambiguous data requires careful consideration to avoid uncritical interpretations. This paper extends prior research on ringed m... ver más
Revista: Applied Sciences

 
Xiongchuan Chen, Shuangcheng Zhang, Bin Wang, Guangwei Jiang, Chuanlu Cheng, Xin Zhou, Zhijie Feng and Jingtao Li    
The motion of a continuously operating reference station is usually dominated by the long-term crustal motions of the tectonic block on which the station is located. Monitoring changes in the coordinates of reference stations located at tectonic plate bo... ver más
Revista: Applied Sciences