|
|
|
Zhichao Chen, Guoqiang Wang, Tao Lv and Xu Zhang
Diseases of tomato leaves can seriously damage crop yield and financial rewards. The timely and accurate detection of tomato diseases is a major challenge in agriculture. Hence, the early and accurate diagnosis of tomato diseases is crucial. The emergenc...
ver más
|
|
|
|
|
|
Ying Chen, Xi Qiao, Feng Qin, Hongtao Huang, Bo Liu, Zaiyuan Li, Conghui Liu, Quan Wang, Fanghao Wan, Wanqiang Qian and Yiqi Huang
Invasive plant species pose significant biodiversity and ecosystem threats. Real-time identification of invasive plants is a crucial prerequisite for early and timely prevention. While deep learning has shown promising results in plant recognition, the u...
ver más
|
|
|
|
|
|
Min Hao, Quan Sun, Chuanzhong Xuan, Xiwen Zhang, Minghui Zhao and Shuo Song
To achieve automated farming management, including the recording, tracking, and statistics of sheep, we harness deep learning technology for sheep face recognition research, and the further development of lightweight sheep face recognition models. Deep l...
ver más
|
|
|
|
|
|
Huizhong Xiong, Xiaotong Gao, Ningyi Zhang, Haoxiong He, Weidong Tang, Yingqiu Yang, Yuqian Chen, Yang Jiao, Yihong Song and Shuo Yan
A novel deep learning model, DiffuCNN, is introduced in this paper, specifically designed for counting tobacco lesions in complex agricultural settings. By integrating advanced image processing techniques with deep learning methodologies, the model signi...
ver más
|
|
|
|
|
|
Huiru Zhou, Qiang Lai, Qiong Huang, Dingzhou Cai, Dong Huang and Boming Wu
The severity of rice blast and its impacts on rice yield are closely related to the inoculum quantity of Magnaporthe oryzae, and automatic detection of the pathogen spores in microscopic images can provide a rapid and effective way to quantify pathogen i...
ver más
|
|
|