|
|
|
Futo Ueda, Hiroto Tanouchi, Nobuyuki Egusa and Takuya Yoshihiro
River water-level prediction is crucial for mitigating flood damage caused by torrential rainfall. In this paper, we attempt to predict river water levels using a deep learning model based on radar rainfall data instead of data from upstream hydrological...
ver más
|
|
|
|
|
|
Shurong Peng, Lijuan Guo, Haoyu Huang, Xiaoxu Liu and Jiayi Peng
The integration of large-scale wind power into the power grid threatens the stable operation of the power system. Traditional wind power prediction is based on time series without considering the variability between wind turbines in different locations. ...
ver más
|
|
|
|
|
|
Chi Han, Wei Xiong and Ronghuan Yu
Mega-constellation network traffic forecasting provides key information for routing and resource allocation, which is of great significance to the performance of satellite networks. However, due to the self-similarity and long-range dependence (LRD) of m...
ver más
|
|
|
|
|
|
Ligang Yuan, Jing Liu, Haiyan Chen, Daoming Fang and Wenlu Chen
Scene taxiing time is an important indicator for assessing the operational efficiency of airports as well as green airports, and it is also a fundamental parameter in flight regularity statistics. The accurate prediction of taxiing time can help decision...
ver más
|
|
|
|
|
|
Binzhen Zhou, Jiahao Wang, Kanglixi Ding, Lei Wang and Yingyi Liu
Predicting extreme waves can foresee the hydrodynamic environment of marine engineering, critical for avoiding disaster risks. Till now, there are barely any available models that can rapidly and accurately predict the occurrence probability of freak wav...
ver más
|
|
|