|
|
|
Tomasz Walczyna and Zbigniew Piotrowski
The proliferation of ?Deep fake? technologies, particularly those facilitating face-swapping in images or videos, poses significant challenges and opportunities in digital media manipulation. Despite considerable advancements, existing methodologies ofte...
ver más
|
|
|
|
|
|
Chenglin Yang, Dongliang Xu and Xiao Ma
Due to the increasing severity of network security issues, training corresponding detection models requires large datasets. In this work, we propose a novel method based on generative adversarial networks to synthesize network data traffic. We introduced...
ver más
|
|
|
|
|
|
Juyao Wei, Zhenggang Lu, Zheng Yin and Zhipeng Jing
This paper presents a novel data-driven multiagent reinforcement learning (MARL) controller for enhancing the running stability of independently rotating wheels (IRW) and reducing wheel?rail wear. We base our active guidance controller on the multiagent ...
ver más
|
|
|
|
|
|
Yuchen Dong, Heng Zhou, Chengyang Li, Junjie Xie, Yongqiang Xie and Zhongbo Li
Camouflaged object detection (COD) is an arduous challenge due to the striking resemblance of camouflaged objects to their surroundings. The abundance of similar background information can significantly impede the efficiency of camouflaged object detecti...
ver más
|
|
|
|
|
|
Hang Li, Shengjie Zhao and Hao Deng
The extraction of community-scale green infrastructure (CSGI) poses challenges due to limited training data and the diverse scales of the targets. In this paper, we reannotate a training dataset of CSGI and propose a three-stage transfer learning method ...
ver más
|
|
|