ARTÍCULO
TITULO

An Evaluation of the Robustness of MTS for Imbalanced Data

Chao-Ton Su    
Yu-Hsiang Hsiao    

Resumen

No disponible

 Artículos similares

       
 
Kalyan Chatterjee, M. Raju, N. Selvamuthukumaran, M. Pramod, B. Krishna Kumar, Anjan Bandyopadhyay and Saurav Mallik    
According to global data on visual impairment from the World Health Organization in 2010, an estimated 285 million individuals, including 39 million who are blind, face visual impairments. These individuals use non-contact methods such as voice commands ... ver más
Revista: Information

 
Ku Muhammad Naim Ku Khalif, Woo Chaw Seng, Alexander Gegov, Ahmad Syafadhli Abu Bakar and Nur Adibah Shahrul    
Convolutional Neural Networks (CNNs) have garnered significant utilisation within automated image classification systems. CNNs possess the ability to leverage the spatial and temporal correlations inherent in a dataset. This study delves into the use of ... ver más
Revista: Information

 
Junling Zhang, Min Mei, Jun Wang, Guangpeng Shang, Xuefeng Hu, Jing Yan and Qian Fang    
The deformation of tunnel support structures during tunnel construction is influenced by geological factors, geometrical factors, support factors, and construction factors. Accurate prediction of tunnel support structure deformation is crucial for engine... ver más
Revista: Applied Sciences

 
Sarfaraz Natha, Umme Laila, Ibrahim Ahmed Gashim, Khalid Mahboob, Muhammad Noman Saeed and Khaled Mohammed Noaman    
Brain tumors (BT) represent a severe and potentially life-threatening cancer. Failing to promptly diagnose these tumors can significantly shorten a person?s life. Therefore, early and accurate detection of brain tumors is essential, allowing for appropri... ver más
Revista: Applied Sciences

 
Rejath Jose, Faiz Syed, Anvin Thomas and Milan Toma    
The advancement of machine learning in healthcare offers significant potential for enhancing disease prediction and management. This study harnesses the PyCaret library?a Python-based machine learning toolkit?to construct and refine predictive models for... ver más
Revista: Applied Sciences