ARTÍCULO
TITULO

A Method of Learning Implication Networks from Empirical Data: Algorithm and Monte-Carlo Simulation-Based Validation

Liu    
J    
Desmarais    
M C    

Resumen

No disponible

 Artículos similares

       
 
Jie Wang, Jie Yang, Jiafan He and Dongliang Peng    
Semi-supervised learning has been proven to be effective in utilizing unlabeled samples to mitigate the problem of limited labeled data. Traditional semi-supervised learning methods generate pseudo-labels for unlabeled samples and train the classifier us... ver más
Revista: Algorithms

 
Weihan Huang, Ke Gao and Yu Feng    
Predicting earthquakes through reasonable methods can significantly reduce the damage caused by secondary disasters such as tsunamis. Recently, machine learning (ML) approaches have been employed to predict laboratory earthquakes using stick-slip dynamic... ver más

 
Todd Kelmar, Maria Chierichetti and Fatemeh Davoudi Kakhki    
This study introduces an innovative approach for optimizing sensor placement in modal testing by applying machine learning with enhanced efficiency and precision.
Revista: Applied Sciences

 
Jun Yeong Kim, Chang Geun Song, Jung Lee, Jong-Hyun Kim, Jong Wan Lee and Sun-Jeong Kim    
In this paper, we propose a learning model for tracking the isolines of fluid based on the physical properties of particles in particle-based fluid simulations. Our method involves analyzing which weights, closely related to surface tracking among the va... ver más
Revista: Applied Sciences

 
Ugur Ercan, Onder Kabas and Georgiana Moiceanu    
Alfalfa holds an extremely significant place in animal nutrition when it comes to providing essential nutrients. The leaves of alfalfa specifically boast the highest nutritional value, containing a remarkable 70% of crude protein and an impressive 90% of... ver más
Revista: Applied Sciences