|
|
|
Jie Wang, Jie Yang, Jiafan He and Dongliang Peng
Semi-supervised learning has been proven to be effective in utilizing unlabeled samples to mitigate the problem of limited labeled data. Traditional semi-supervised learning methods generate pseudo-labels for unlabeled samples and train the classifier us...
ver más
|
|
|
|
|
|
Weihan Huang, Ke Gao and Yu Feng
Predicting earthquakes through reasonable methods can significantly reduce the damage caused by secondary disasters such as tsunamis. Recently, machine learning (ML) approaches have been employed to predict laboratory earthquakes using stick-slip dynamic...
ver más
|
|
|
|
|
|
Todd Kelmar, Maria Chierichetti and Fatemeh Davoudi Kakhki
This study introduces an innovative approach for optimizing sensor placement in modal testing by applying machine learning with enhanced efficiency and precision.
|
|
|
|
|
|
Jun Yeong Kim, Chang Geun Song, Jung Lee, Jong-Hyun Kim, Jong Wan Lee and Sun-Jeong Kim
In this paper, we propose a learning model for tracking the isolines of fluid based on the physical properties of particles in particle-based fluid simulations. Our method involves analyzing which weights, closely related to surface tracking among the va...
ver más
|
|
|
|
|
|
Ugur Ercan, Onder Kabas and Georgiana Moiceanu
Alfalfa holds an extremely significant place in animal nutrition when it comes to providing essential nutrients. The leaves of alfalfa specifically boast the highest nutritional value, containing a remarkable 70% of crude protein and an impressive 90% of...
ver más
|
|
|