|
|
|
Aravind Kolli, Qi Wei and Stephen A. Ramsey
In this work, we explored computational methods for analyzing a color digital image of a wound and predicting (from the analyzed image) the number of days it will take for the wound to fully heal. We used a hybrid computational approach combining deep ne...
ver más
|
|
|
|
|
|
Tao Tang, Yuting Cui, Rui Feng and Deliang Xiang
With the development of deep learning in the field of computer vision, convolutional neural network models and attention mechanisms have been widely applied in SAR image target recognition. The improvement of convolutional neural network attention in exi...
ver más
|
|
|
|
|
|
Haiyang Yao, Tian Gao, Yong Wang, Haiyan Wang and Xiao Chen
To overcome the challenges of inadequate representation and ineffective information exchange stemming from feature homogenization in underwater acoustic target recognition, we introduce a hybrid network named Mobile_ViT, which synergizes MobileNet and Tr...
ver más
|
|
|
|
|
|
Tahsin Koroglu and Elanur Ekici
In recent years, wind energy has become remarkably popular among renewable energy sources due to its low installation costs and easy maintenance. Having high energy potential is of great importance in the selection of regions where wind energy investment...
ver más
|
|
|
|
|
|
Ligang Yuan, Jing Liu, Haiyan Chen, Daoming Fang and Wenlu Chen
Scene taxiing time is an important indicator for assessing the operational efficiency of airports as well as green airports, and it is also a fundamental parameter in flight regularity statistics. The accurate prediction of taxiing time can help decision...
ver más
|
|
|