ARTÍCULO
TITULO

The O.D.E. Method for Convergence of Stochastic Approximation and Reinforcement Learning

V. S. Borkar    
S. P. Meyn    

Resumen

No disponible

 Artículos similares

       
 
Jun Li, Javed Iqbal Tanoli, Miao Zhou and Filip Gurkalo    
Based on an improved genetic algorithm and debris flow disaster monitoring network, this study examines the monitoring and early warning method of debris flow expansion behavior, divides the risk of debris flow disaster, and provides a scientific basis f... ver más
Revista: Water

 
Jafar Jafari-Asl, Seyed Arman Hashemi Monfared and Soroush Abolfathi    
This study investigates the optimal and safe operation of pumping stations in water distribution systems (WDSs) with the aim of reducing the environmental footprint of water conveyance processes. We introduced the nonlinear chaotic honey badger algorithm... ver más
Revista: Water

 
Yiheng Zhou, Kainan Ma, Qian Sun, Zhaoyuxuan Wang and Ming Liu    
Over the past several decades, deep neural networks have been extensively applied to medical image segmentation tasks, achieving significant success. However, the effectiveness of traditional deep segmentation networks is substantially limited by the sma... ver más
Revista: Information

 
Feng Cheng, Shuchun Jia and Wei Gao    
In order to tackle the issue of carbon emissions in logistics and distribution, a vehicle routing model was proposed with the aim of minimizing the overall cost, which includes the vehicle?s fixed cost, transportation costs, and carbon emission costs. An... ver más
Revista: Applied Sciences

 
Ruishan Xing, Gang Li, Fan Wang and Yang Yang    
To ensure the overall continuity of displacement and out-of-plane stress in composite laminate structures and to quantitatively analyze the mechanical properties of composite materials after damage or repair, a finite element solution method is applied b... ver más
Revista: Aerospace