Inicio  /  POWDER TECHNOLOGY  /  Vol: 175 Núm: 3 Par: 0 (2007)  /  Artículo
ARTÍCULO
TITULO

Use of X-ray powder diffraction for quantitative analysis of carbonate rock reservoir samples

Said S. Al-Jaroudi    
Anwar Ul-Hamid    
Abdul-Rashid I. Mohammed and Salih     

Resumen

No disponible

 Artículos similares

       
 
Ku Muhammad Naim Ku Khalif, Woo Chaw Seng, Alexander Gegov, Ahmad Syafadhli Abu Bakar and Nur Adibah Shahrul    
Convolutional Neural Networks (CNNs) have garnered significant utilisation within automated image classification systems. CNNs possess the ability to leverage the spatial and temporal correlations inherent in a dataset. This study delves into the use of ... ver más
Revista: Information

 
Jin-Kyu Kang, Khonekeo Kingkhambang, Chang-Gu Lee and Seong-Jik Park    
Phosphorus is an essential macroelement in plant growth and the human body, but excessive water enrichment with phosphorus is a global threat to water quality. To address this problem, the development of an efficient, affordable adsorbent for use in remo... ver más
Revista: Water

 
Giulio Vara, Paolo Spinnato, Giancarlo Facchini, Marco Miceli, Francesco Ursini, Luca Spinardi, Gianfranco Vornetti and Stefano Ratti    
Osteoporosis is a common condition characterized by low bone mineral density (BMD) and deterioration of bone microarchitecture, leading to increased risk of fractures. Early diagnosis and treatment of osteoporosis are critical for preventing fractures an... ver más
Revista: Applied Sciences

 
Petr Korusenko, Ksenia Kharisova, Egor Knyazev, Oleg Levin, Alexander Vinogradov and Elena Alekseeva    
In this study, we present an innovative ion-beam doping technique for the controlled modification of the near-surface region of multi-walled carbon nanotubes (MWCNTs) aimed at creating pyridinic and pyrrolic nitrogen defects in their walls. This method i... ver más
Revista: Applied Sciences

 
Vasile-Adrian Surdu and Romuald Gyorgy    
X-ray diffraction (XRD) is a proven, powerful technique for determining the phase composition, structure, and microstructural features of crystalline materials. The use of machine learning (ML) techniques applied to crystalline materials research has inc... ver más
Revista: Applied Sciences