|
|
|
Alexander Isaev, Tatiana Dobroserdova, Alexander Danilov and Sergey Simakov
This study introduces an innovative approach leveraging physics-informed neural networks (PINNs) for the efficient computation of blood flows at the boundaries of a four-vessel junction formed by a Fontan procedure. The methodology incorporates a 3D mesh...
ver más
|
|
|
|
|
|
Petros Brimos, Areti Karamanou, Evangelos Kalampokis and Konstantinos Tarabanis
Traffic forecasting has been an important area of research for several decades, with significant implications for urban traffic planning, management, and control. In recent years, deep-learning models, such as graph neural networks (GNN), have shown grea...
ver más
|
|
|
|
|
|
George Tzougas and Konstantin Kutzkov
We developed a methodology for the neural network boosting of logistic regression aimed at learning an additional model structure from the data. In particular, we constructed two classes of neural network-based models: shallow?dense neural networks with ...
ver más
|
|
|
|
|
|
Priyank Kalgaonkar and Mohamed El-Sharkawy
Object detection, a more advanced application of computer vision than image classification, utilizes deep neural networks to predict objects in an input image and determine their locations through bounding boxes. The field of artificial intelligence has ...
ver más
|
|
|
|
|
|
Alamir Labib Awad, Saleh Mesbah Elkaffas and Mohammed Waleed Fakhr
Stock value prediction and trading, a captivating and complex research domain, continues to draw heightened attention. Ensuring profitable returns in stock market investments demands precise and timely decision-making. The evolution of technology has int...
ver más
|
|
|