Inicio  /  SCIENTIA HORTICULTURAE  /  Vol: 109 Núm: 4 (2006)  /  Artículo
ARTÍCULO
TITULO

Early detection of graft incompatibility in apricot (Prunus armeniaca L.) using phenol analyses

V. Usenik    
B. Kr¿ka    
M. Vi¿an and F. ¿tampar    

Resumen

No disponible

PÁGINAS
pp. 332 - 338
REVISTAS SIMILARES
Agriculture
Agronomy
Forests

 Artículos similares

       
 
Enrico Santangelo, Angelo Del Giudice, Simone Figorilli, Simona Violino, Corrado Costa, Marco Bascietto, Simone Bergonzoli and Claudio Beni    
The autonecrotic tomato line V20368 (working code IGSV) spontaneously develops necrotic lesions with acropetal progression in response to an increase in temperature and light irradiation. The process is associated with the interaction between tomato and ... ver más
Revista: Agriculture

 
Heguang Sun, Lin Zhou, Meiyan Shu, Jie Zhang, Ziheng Feng, Haikuan Feng, Xiaoyu Song, Jibo Yue and Wei Guo    
Southern blight significantly impacts peanut yield, and its severity is exacerbated by high-temperature and high-humidity conditions. The mycelium attached to the plant?s interior quickly proliferates, contributing to the challenges of early detection an... ver más
Revista: Agriculture

 
Wolfgang Jarausch, Miriam Runne, Nora Schwind, Barbara Jarausch and Uwe Knauer    
Apple proliferation (AP) is an economically important disease in many apple-growing regions caused by ?Candidatus Phytoplasma mali? which is spread by migrating psyllid vectors on a regional scale. As infected trees in orchards are the only inoculum sour... ver más
Revista: Agronomy

 
Francisco Altimiras, Leonardo Pavéz, Alireza Pourreza, Osvaldo Yañez, Lisdelys González-Rodríguez, José García, Claudio Galaz, Andrés Leiva-Araos and Héctor Allende-Cid    
In agricultural production, it is fundamental to characterize the phenological stage of plants to ensure a good evaluation of the development, growth and health of crops. Phenological characterization allows for the early detection of nutritional deficie... ver más
Revista: Agronomy

 
Luana Centorame, Thomas Gasperini, Alessio Ilari, Andrea Del Gatto and Ester Foppa Pedretti    
Machine learning is a widespread technology that plays a crucial role in digitalisation and aims to explore rules and patterns in large datasets to autonomously solve non-linear problems, taking advantage of multiple source data. Due to its versatility, ... ver más
Revista: Agronomy