ARTÍCULO
TITULO

Optimal Parameter Extraction and Uncertainty Estimation in Intrinsic FET Small-Signal Models

Fager    
C. Linner    
L. J. P. Pedro    
J. C.    

Resumen

No disponible

 Artículos similares

       
 
Daniel Jancarczyk, Ireneusz Wróbel, Piotr Danielczyk and Marcin Sidzina    
Vibration monitoring is essential for maintaining the optimal performance and reliability of industrial machinery, which experiences dynamic forces and vibrations during operation. This study delved into a comprehensive analysis of vibration monitoring i... ver más
Revista: Applied Sciences

 
Ying-Qing Guo, Meng Li, Yang Yang, Zhao-Dong Xu and Wen-Han Xie    
As a typical intelligent device, magnetorheological (MR) dampers have been widely applied in vibration control and mitigation. However, the inherent hysteresis characteristics of magnetic materials can cause significant time delays and fluctuations, affe... ver más
Revista: Information

 
Wen Gao, Yanqiang Bi, Xiyuan Li, Apeng Dong, Jing Wang and Xiaoning Yang    
Hybrid airships, combining aerodynamic lift and buoyant lift, are efficient near-space aircraft for scientific exploration, observation, and surveillance. Compared to conventional airplanes and airships, hybrid airships offer unique advantages, including... ver más
Revista: Aerospace

 
Andrea D?Ambrosio and Roberto Furfaro    
This paper demonstrates the utilization of Pontryagin Neural Networks (PoNNs) to acquire control strategies for achieving fuel-optimal trajectories. PoNNs, a subtype of Physics-Informed Neural Networks (PINNs), are tailored for solving optimal control pr... ver más
Revista: Aerospace

 
Norah Fahd Alhussainan, Belgacem Ben Youssef and Mohamed Maher Ben Ismail    
Brain tumor diagnosis traditionally relies on the manual examination of magnetic resonance images (MRIs), a process that is prone to human error and is also time consuming. Recent advancements leverage machine learning models to categorize tumors, such a... ver más
Revista: Computation