|
|
|
Feifei He, Qinjuan Wan, Yongqiang Wang, Jiang Wu, Xiaoqi Zhang and Yu Feng
Accurately predicting hydrological runoff is crucial for water resource allocation and power station scheduling. However, there is no perfect model that can accurately predict future runoff. In this paper, a daily runoff prediction method with a seasonal...
ver más
|
|
|
|
|
|
Junlin Lou, Burak Yuksek, Gokhan Inalhan and Antonios Tsourdos
In this study, we consider the problem of motion planning for urban air mobility applications to generate a minimal snap trajectory and trajectory that cost minimal time to reach a goal location in the presence of dynamic geo-fences and uncertainties in ...
ver más
|
|
|
|
|
|
Sorin Zoican, Roxana Zoican, Dan Galatchi and Marius Vochin
This paper illustrates a general framework in which a neural network application can be easily integrated and proposes a traffic forecasting approach that uses neural networks based on graphs. Neural networks based on graphs have the advantage of capturi...
ver más
|
|
|
|
|
|
Angel E. Muñoz-Zavala, Jorge E. Macías-Díaz, Daniel Alba-Cuéllar and José A. Guerrero-Díaz-de-León
This paper reviews the application of artificial neural network (ANN) models to time series prediction tasks. We begin by briefly introducing some basic concepts and terms related to time series analysis, and by outlining some of the most popular ANN arc...
ver más
|
|
|
|
|
|
Gerasim V. Krivovichev and Valentina Yu. Sergeeva
The paper is devoted to the theoretical and numerical analysis of the two-step method, constructed as a modification of Polyak?s heavy ball method with the inclusion of an additional momentum parameter. For the quadratic case, the convergence conditions ...
ver más
|
|
|