|
|
|
Lu Wang, Cunjie Yan, Wenqi Zhang and Yinghu Zhang
Exploring the crop production water footprint and their driving factors is of significant importance for management of agricultural water resources. However, how do we effectively assess the total agricultural water consumption and explore the significan...
ver más
|
|
|
|
|
|
Ying Chen, Xi Qiao, Feng Qin, Hongtao Huang, Bo Liu, Zaiyuan Li, Conghui Liu, Quan Wang, Fanghao Wan, Wanqiang Qian and Yiqi Huang
Invasive plant species pose significant biodiversity and ecosystem threats. Real-time identification of invasive plants is a crucial prerequisite for early and timely prevention. While deep learning has shown promising results in plant recognition, the u...
ver más
|
|
|
|
|
|
Zhiqing Guo, Xiaohui Chen, Ming Li, Yucheng Chi and Dongyuan Shi
Peanut leaf spot is a worldwide disease whose prevalence poses a major threat to peanut yield and quality, and accurate prediction models are urgently needed for timely disease management. In this study, we proposed a novel peanut leaf spot prediction me...
ver más
|
|
|
|
|
|
Efrain Noa-Yarasca, Javier M. Osorio Leyton and Jay P. Angerer
Timely forecasting of aboveground vegetation biomass is crucial for effective management and ensuring food security. However, research on predicting aboveground biomass remains scarce. Artificial intelligence (AI) methods could bridge this research gap a...
ver más
|
|
|
|
|
|
Lei Sun, Chongchong Yang, Jun Wang, Xiwen Cui, Xuesong Suo, Xiaofei Fan, Pengtao Ji, Liang Gao and Yuechen Zhang
Existing maize production is grappling with the hurdles of not applying nitrogen fertilizer accurately due to subpar detection accuracy and responsiveness. This situation presents a significant challenge, as it has the potential to impact the optimal yie...
ver más
|
|
|