ARTÍCULO
TITULO

RESEARCH OF CLASSIFICATION METHOD OF TV3-117 ENGINE RATINGS OPERATIONS BASED ON NEURAL NETWORK TECHNOLOGIES

???? ??????????? ???????    
?????? ???????? ??????    
??????? ????????? ??????    
????????? ????????? ???????    
??????? ???????? ??????    

Resumen

The subject matter of the article is ?V3-117 engine ratings and recognition methods. The goal of the work is to create methods for classification TV3-117 engine ratings based on neural network technologies in real time. The following tasks were solved in the article: the principles formation on classification and recognition of TV3-117 engine?s conditions, determination of main steps for solving problem of classification and recognition TV3-117 engine conditions in the neural network basis, development of a method for the classification and recognition TV3-117 engine conditions using neural networks. The following methods used are ? methods of probability theory and mathematical statistics, methods of neuroinformatics, methods of the information systems theory and data processing. The following results were obtained ? the principles of classification and recognition TV3-117 engine conditions are formulated and the main steps for solving this problem are defined. It is substantiated that solving the problem of classifying the TV3-117 engine ratings in the neural network basis allows solve this problem more efficiently with less time and computational resources than using classical methods (for example, the Bayes method). Conclusions: using the neural network technologies for the classification and recognition the TV3-117 engine conditions allows to reduce the processing time, and most of the time spent on solving this problem is used to train the neural network. Prospects for further research are the development of an expert system, one of the modules is the module of classification and recognition TV3-117 engine conditions which is used in the board system to monitor and diagnose the engine technical condition and interact with the engine control systems, allows is to effect to the executive mechanism fluently and in time, from the one hand, to improve the quality control engine and its subsystems from the other hand in order to increase its reliability during its operation.

 Artículos similares

       
 
Norah Fahd Alhussainan, Belgacem Ben Youssef and Mohamed Maher Ben Ismail    
Brain tumor diagnosis traditionally relies on the manual examination of magnetic resonance images (MRIs), a process that is prone to human error and is also time consuming. Recent advancements leverage machine learning models to categorize tumors, such a... ver más
Revista: Computation

 
Haoyu Lin, Pengkun Quan, Zhuo Liang, Dongbo Wei and Shichun Di    
With the rise of electric vehicles, autonomous driving, and valet parking technologies, considerable research has been dedicated to automatic charging solutions. While the current focus lies on charging robot design and the visual positioning of charging... ver más
Revista: Applied Sciences

 
Yuchen Zhou, Mu Liu, Guanhong Xie and Chunqing Liu    
Traditional villages, rich in historical and cultural value, hold a high level of preservation value. In the process of urbanization, traditional villages face the crisis of decline, making it difficult to perpetuate the carried cultural heritage. The Ga... ver más
Revista: Applied Sciences

 
Nils Hütten, Miguel Alves Gomes, Florian Hölken, Karlo Andricevic, Richard Meyes and Tobias Meisen    
Quality assessment in industrial applications is often carried out through visual inspection, usually performed or supported by human domain experts. However, the manual visual inspection of processes and products is error-prone and expensive. It is ther... ver más

 
Fahim Sufi    
GPT (Generative Pre-trained Transformer) represents advanced language models that have significantly reshaped the academic writing landscape. These sophisticated language models offer invaluable support throughout all phases of research work, facilitatin... ver más
Revista: Information