ARTÍCULO
TITULO

Sentiment Analysis of Impact of Technology on Employment from Text on Twitter

Shahzad Qaiser    
Nooraini Yusoff    
Farzana Kabir Ahmad    
Ramsha Ali    

Resumen

Many different studies are in progress to analyze the content created by the users on social media due to its influence and social ripple effect. Various content created on social media has pieces of information and user?s sentiments about social issues. This study aims to analyze people?s sentiments about the impact of technology on employment and advancements in technologies and build a machine learning classifier to classify the sentiments. People are getting nervous, depressed and even doing suicides due to unemployment; hence, it is essential to explore this relatively new area of research. The study has two main objectives 1) to preprocess text collected from Twitter concerning the impact of technology on employment and analyze its sentiment, 2) to evaluate the performance of machine learning Naïve Bayes (NB) classifier on the text. To achieve this, a methodology is proposed that includes 1) data collection and preprocessing 2) analyze sentiment, 3) building machine learning classifier and 4) compare the performance of NB and support vector machine (SVM). NB and SVM achieved 87.18% and 82.05% accuracy respectively. The study found that 65% of the people hold negative sentiment regarding the impact of technology on employment and technological advancements; hence people must acquire new skills to minimize the effect of structural unemployment.

 Artículos similares

       
 
Achini Adikari, Su Nguyen, Rashmika Nawaratne, Daswin De Silva and Damminda Alahakoon    
The proliferation of online hotel review platforms has prompted decision-makers in the hospitality sector to acknowledge the significance of extracting valuable information from this vast source. While contemporary research has primarily focused on extra... ver más
Revista: Applied Sciences

 
Hongyu Shao, Sizhe Pan, Yufei Song and Quanfu Li    
In the context of rapid product iteration, design conflicts arise from discrepancies in designers? understanding of user needs, influenced by subjective preferences, behavioural stances, and other factors. This paper proposes a product conceptual design ... ver más
Revista: Applied Sciences

 
Haidi Badr, Nayer Wanas and Magda Fayek    
Unsupervised domain adaptation (UDA) presents a significant challenge in sentiment analysis, especially when faced with differences between source and target domains. This study introduces Weighted Sequential Unsupervised Domain Adaptation (WS-UDA), a no... ver más
Revista: Applied Sciences

 
Mahammad Khalid Shaik Vadla, Mahima Agumbe Suresh and Vimal K. Viswanathan    
Understanding customer emotions and preferences is paramount for success in the dynamic product design landscape. This paper presents a study to develop a prediction pipeline to detect the aspect and perform sentiment analysis on review data. The pre-tra... ver más
Revista: Algorithms

 
Peranut Nimitsurachat and Peter Washington    
Emotion recognition models using audio input data can enable the development of interactive systems with applications in mental healthcare, marketing, gaming, and social media analysis. While the field of affective computing using audio data is rich, a m... ver más
Revista: AI