Inicio  /  Ingeniería   /  Vol: 19 Núm: 1 Par: 0 (2014)  /  Artículo
ARTÍCULO
TITULO

Mechanisms for Authenticity of Learning Objects in Learning Content Management Systems Platforms: Issues and Proposals

Paulo Alonso Gaona    
Carlos Enrique Montenegro Marín    
Helvert Wiesner Gonzalez    

Resumen

Abstract AuthorsDownloadsReferencesHow to Cite

 Artículos similares

       
 
Lei Yang, Mengxue Xu and Yunan He    
Convolutional Neural Networks (CNNs) have become essential in deep learning applications, especially in computer vision, yet their complex internal mechanisms pose significant challenges to interpretability, crucial for ethical applications. Addressing t... ver más
Revista: Applied Sciences

 
Despoina Nteli, Maria Nteli, Konstantinos Konstantinidis, Anastasia Foka, Foteini Charisi, Iliana Michailidou, Sotiria Stavropoulou De Lorenzo, Marina Boziki, Maria Tzitiridou-Chatzopoulou, Evangelia Spandou, Constantina Simeonidou, Christos Bakirtzis and Evangelia Kesidou    
Argininemia or arginase-1 deficiency constitutes a rare, genetic, metabolic disorder caused by mutations in arginase 1?the last enzyme of the urea cycle?that hydrolyses L-arginine to ornithine and urea. The disease is associated with progressive developm... ver más
Revista: Applied Sciences

 
Sharoug Alzaidy and Hamad Binsalleeh    
In the field of behavioral detection, deep learning has been extensively utilized. For example, deep learning models have been utilized to detect and classify malware. Deep learning, however, has vulnerabilities that can be exploited with crafted inputs,... ver más
Revista: Applied Sciences

 
Xing-Zhou Li, Zhong-Ren Peng, Qingyan Fu, Qian Wang, Jun Pan and Hongdi He    
Air pollution is a growing concern in metropolitan areas worldwide, and Shanghai, as one of the world?s busiest ports, faces significant challenges in local air pollution control. Assessing the contribution of a specific port to air pollution is essentia... ver más

 
Aristeidis Karras, Christos Karras, Konstantinos C. Giotopoulos, Dimitrios Tsolis, Konstantinos Oikonomou and Spyros Sioutas    
Federated learning (FL) has emerged as a promising technique for preserving user privacy and ensuring data security in distributed machine learning contexts, particularly in edge intelligence and edge caching applications. Recognizing the prevalent chall... ver más
Revista: Information