Inicio  /  Nauka ta Progres Transportu  /  Núm: 26 Par: 0 (2009)  /  Artículo
ARTÍCULO
TITULO

STATISTICAL ANALYSIS OF THE DEMOLITION OF THE HITCH DEVICES ELEMENTS

V. V. Artemchuk    
N. A. Muhina    
M. A. Grichanyi    

Resumen

The results of statistical research of wear of automatic coupler body butts and thrust plates of electric locomotives are presented in the article. Due to the increased wear the mentioned elements require special attention.

 Artículos similares

       
 
Jeffrey Tim Query, Evaristo Diz     Pág. 145 - 159
AbstractIn this study we examine the robustness of fit for a multivariate and an autoregressive integrated moving average model to a data sample time series type.  The sample is a recurrent actuarial data set for a 10-year horizon.  We utilize ... ver más

 
Xiang Liu, Jin Zhang, Wenqing Shi, Min Wang, Kai Chen and Li Wang    
Understanding the drivers of macroinvertebrate community structure is fundamental for adequately controlling pollutants and managing ecosystems under global change. In this study, the abundance and diversity of benthic macroinvertebrates, as well as thei... ver más
Revista: Water

 
Mmasabata Dolly Molekoa, Ram Avtar, Pankaj Kumar, Huynh Vuong Thu Minh and Tonni Agustiono Kurniawan    
Despite being a finite resource, both the quality and quantity of groundwater are under tremendous pressure due to rapid global changes, viz. population growth, land-use/land-cover changes (LULC), and climate change. The 6th Sustainable Development Goal ... ver más
Revista: Water

 
António Carlos Pinheiro Fernandes, Luís Filipe Sanches Fernandes, Daniela Patrícia Salgado Terêncio, Rui Manuel Vitor Cortes and Fernando António Leal Pacheco    
Interactions between pollution sources, water contamination, and ecological integrity are complex phenomena and hard to access. To comprehend this subject of study, it is crucial to use advanced statistical tools, which can unveil cause-effect relationsh... ver más
Revista: Water

 
Saeed Samadianfard, Salar Jarhan, Ely Salwana, Amir Mosavi, Shahaboddin Shamshirband and Shatirah Akib    
Advancement in river flow prediction systems can greatly empower the operational river management to make better decisions, practices, and policies. Machine learning methods recently have shown promising results in building accurate models for river flow... ver más
Revista: Water