Resumen
Extending the lifetime of the energy constrained wireless sensor networks is a crucial challenge in wireless sensor networks (WSNs) research. When designing a WSN infrastructure Resource limitations have to be taken into account. The inherent problem in WSNs is unbalanced energy consumption, characterized by multi hop routing and a many-to-one traffic pattern. This uneven energy dissipation can significantly reduce network lifetime. This paper proposes a new routing method for WSNs to extend network lifetime using a combination of a fuzzy approach and Biogeography Based Optimization (BBO) algorithm which is capable of finding the optimal routing path form the source to the destination by favoring some of routing criteria and balancing among them to prolong the network lifetime. To demonstrate the effectiveness of the proposed method in terms of balancing energy consumption and maximization of network lifetime, we compare our approach with the BBO search algorithm and fuzzy approach using the same routing criteria. Simulation results demonstrate that the network lifetime achieved by the proposed method could be increased by nearly 25% more than that obtained by the BBO algorithm and by nearly 20% more than that obtained by the fuzzy approach.