Resumen
This paper investigates various building material effects on the cooling load requirements of a typical two-floor house located in the Midwest region in the USA. A survey was done for various building materials along with their prices in the US market. Various building walls, lighting, window glazing, and insulations were used for simulation as single and combined cases. The return on investment from savings in the electrical load consumption against the materials cost was investigated. It was found that the best single case savings and investments were for cases when lights were changed from incandescent lighting with 20 W/m2 to fluorescent bulbs, or when using double skinned walls with 5 cm rock wool or expanded polystyrene insulation. Combined cases, combining more than one single change, offered more reductions in cooling loads but were associated with higher initial costs and, thus, longer returns on investment. The best case recommendation was for buildings with a 20 cm hollow concrete block (HCB) when combined with fluorescent lights and double pane heat-absorbing glazing for windows. Although these recommendations were for a typical house in the Midwest region of the United States, a similar analysis could be adopted by designers and building owners to optimize the energy consumption in their buildings. The final design decision should be based on an optimum correlation of the air-conditioning units’ size and cost, running and maintenance costs, the return on the investment duration, and the available usage area in the building.