Resumen
A method has been proposed to prevent anthropogenic emergencies caused by fire in the premises, based on using the current measure of increment recurrence in the vector of the gas environment state in order to detect possible dangers of maintenance personnel injuries and equipment destruction in the premises. The proposed measure makes it possible to monitor the dynamics of the gas environment state and to identify dangerous states caused by the emergence of fires in the premises at a facility. It has been shown that the gas environment in the premises a means for the transition of impacts from a source of ignition when danger appears in the form of a fire. We verified the proposed method using an example of detecting danger in the form of ignitions of alcohol and paper in a model chamber, which simulated a no hermetic location of an object. It has been established that the estimation of the probability of recurrence of increments in the states of the gas environment tends to increase from zero to 0.5 for alcohol and 0.6 for paper before the moment of the start of a fire. One should note that a sharp and periodic change in the probability estimate is characteristic of the growth trend in the estimation of the probability of recurrence of increments in the gas environment state. It was revealed that there is a random change of phase states corresponding to the mode of the dynamic stability in the dynamics of increments before the emergence of a danger caused by the ignition of a material. The estimate of the probability of recurrence of increments becomes close to zero when danger emerges in the form of ignition of a material. Such a situation corresponds to the loss of dynamic stability of the state of the gas environment. After that, there are the individual random recurrence points, which belong to the region of the main diagonal of the recurrence plot in the dynamics of increments. Further development of the danger under consideration leads to the chaotic nature of increments in the gas environment state.It has been shown that monitoring the dynamics of increments of the states of the gas environment makes it possible to identify the moments of the emergence of a danger caused by the ignition of materials in the premises at a facility. The above indicates the efficiency of the proposed method to prevent emergencies caused by fires at facilities by early detection of ignitions of materials based on the identification of moments when the stability of increments of the states of the gas environment in the premises is disrupted